Supercomputer technologies in the development of methods for solving inverse problems in ultrasound tomography
Numerical methods and programming, Tome 13 (2012) no. 1, pp. 235-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the development of efficient methods for solving inverse problems of wave tomography. An inverse problem is considered as a coefficient inverse problem for the wave equation. Supercomputer technologies allow one to obtain high-resolution tomographic images of diagnosed objects.
Keywords: inverse coefficient problems; wave equation; computer simulation; ultrasound tomography; parallel computing; supercomputer.
@article{VMP_2012_13_1_a23,
     author = {A. V. Goncharsky and S. Yu. Romanov},
     title = {Supercomputer technologies in the development of methods for solving inverse problems in ultrasound tomography},
     journal = {Numerical methods and programming},
     pages = {235--238},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a23/}
}
TY  - JOUR
AU  - A. V. Goncharsky
AU  - S. Yu. Romanov
TI  - Supercomputer technologies in the development of methods for solving inverse problems in ultrasound tomography
JO  - Numerical methods and programming
PY  - 2012
SP  - 235
EP  - 238
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a23/
LA  - ru
ID  - VMP_2012_13_1_a23
ER  - 
%0 Journal Article
%A A. V. Goncharsky
%A S. Yu. Romanov
%T Supercomputer technologies in the development of methods for solving inverse problems in ultrasound tomography
%J Numerical methods and programming
%D 2012
%P 235-238
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a23/
%G ru
%F VMP_2012_13_1_a23
A. V. Goncharsky; S. Yu. Romanov. Supercomputer technologies in the development of methods for solving inverse problems in ultrasound tomography. Numerical methods and programming, Tome 13 (2012) no. 1, pp. 235-238. http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a23/