On approximate open boundary conditions and their performance over long time intervals
Numerical methods and programming, Tome 13 (2012) no. 1, pp. 139-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

The implementation of approximate open boundary conditions for the Klein–Gordon equation is discussed for the case of an initial-boundary problem on the quarter plane. The proposed approach is proved to provide high accuracy, however long the time interval of numerical modeling. A number of numerical experiments illustrate the effectiveness of this approach.
Keywords: Klein–Gordon equation; initial boundary value problem on an unbounded domain; open boundary conditions; time-domain radiation boundary conditions.
@article{VMP_2012_13_1_a14,
     author = {A. R. Maikov},
     title = {On approximate open boundary conditions and their performance over long time intervals},
     journal = {Numerical methods and programming},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a14/}
}
TY  - JOUR
AU  - A. R. Maikov
TI  - On approximate open boundary conditions and their performance over long time intervals
JO  - Numerical methods and programming
PY  - 2012
SP  - 139
EP  - 148
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a14/
LA  - ru
ID  - VMP_2012_13_1_a14
ER  - 
%0 Journal Article
%A A. R. Maikov
%T On approximate open boundary conditions and their performance over long time intervals
%J Numerical methods and programming
%D 2012
%P 139-148
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a14/
%G ru
%F VMP_2012_13_1_a14
A. R. Maikov. On approximate open boundary conditions and their performance over long time intervals. Numerical methods and programming, Tome 13 (2012) no. 1, pp. 139-148. http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a14/