On approximate open boundary conditions and their performance over long time intervals
Numerical methods and programming, Tome 13 (2012) no. 1, pp. 139-148
Voir la notice de l'article provenant de la source Math-Net.Ru
The implementation of approximate open boundary conditions for the Klein–Gordon equation is discussed for the case of an initial-boundary problem on the quarter plane. The proposed approach is proved to provide high accuracy, however long the time interval of numerical modeling. A number of numerical experiments illustrate the effectiveness of this approach.
Keywords:
Klein–Gordon equation; initial boundary value problem on an unbounded domain; open boundary conditions; time-domain radiation boundary conditions.
@article{VMP_2012_13_1_a14,
author = {A. R. Maikov},
title = {On approximate open boundary conditions and their performance over long time intervals},
journal = {Numerical methods and programming},
pages = {139--148},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a14/}
}
TY - JOUR AU - A. R. Maikov TI - On approximate open boundary conditions and their performance over long time intervals JO - Numerical methods and programming PY - 2012 SP - 139 EP - 148 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a14/ LA - ru ID - VMP_2012_13_1_a14 ER -
A. R. Maikov. On approximate open boundary conditions and their performance over long time intervals. Numerical methods and programming, Tome 13 (2012) no. 1, pp. 139-148. http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a14/