Error estimation in linear inverse problems with prior information
Numerical methods and programming, Tome 13 (2012) no. 1, pp. 14-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse problem for an operator equation $Az=u$ is considered. The exact operator $A$ and the exact right-hand side $u$ are unknown. Only their upper and lower estimates are available. A technique of finding upper and lower estimates for the exact solution is proposed under the assumption that this solution is positive and bounded. A posterior error estimate is obtained for approximate solutions. The approximate solutions with an optimal posterior error estimate are discussed. Various prior information on the exact solution is used (for example, its monotonicity and convexity).
Keywords: linear ill-posed problems; error estimation; partially ordered sets.
@article{VMP_2012_13_1_a1,
     author = {Yu. M. Korolev and A. G. Yagola},
     title = {Error estimation in linear inverse problems with prior information},
     journal = {Numerical methods and programming},
     pages = {14--18},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a1/}
}
TY  - JOUR
AU  - Yu. M. Korolev
AU  - A. G. Yagola
TI  - Error estimation in linear inverse problems with prior information
JO  - Numerical methods and programming
PY  - 2012
SP  - 14
EP  - 18
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a1/
LA  - ru
ID  - VMP_2012_13_1_a1
ER  - 
%0 Journal Article
%A Yu. M. Korolev
%A A. G. Yagola
%T Error estimation in linear inverse problems with prior information
%J Numerical methods and programming
%D 2012
%P 14-18
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a1/
%G ru
%F VMP_2012_13_1_a1
Yu. M. Korolev; A. G. Yagola. Error estimation in linear inverse problems with prior information. Numerical methods and programming, Tome 13 (2012) no. 1, pp. 14-18. http://geodesic.mathdoc.fr/item/VMP_2012_13_1_a1/