Calculation of the density of states and the thermal properties of polymer
Numerical methods and programming, Tome 12 (2011) no. 4, pp. 397-408
Voir la notice de l'article provenant de la source Math-Net.Ru
The Monte Carlo method with the use of the Wang–Landau algorithm is applied
to study the lattice models of free polymer chains and 6-arm polymer stars.
The ratio of self-avoiding walks among semi-phantom walks for the chains of length
$N\leq 300$ and the stars with the total number $N\leq 720$ of segments is determined.
The distribution over the number of monomers' contacts for chains and stars
with the number $N=30, 72, 120$ of segments is obtained. Based on this distribution,
the temperature dependences are found for the internal energy, the heat capacity,
and the entropy.
Keywords:
polymer star; Wang-Landau algorithm.
@article{VMP_2011_12_4_a1,
author = {I. A. Silantyeva and P. N. Vorontsov-Velyaminov},
title = {Calculation of the density of states and the thermal properties of polymer},
journal = {Numerical methods and programming},
pages = {397--408},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a1/}
}
TY - JOUR AU - I. A. Silantyeva AU - P. N. Vorontsov-Velyaminov TI - Calculation of the density of states and the thermal properties of polymer JO - Numerical methods and programming PY - 2011 SP - 397 EP - 408 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a1/ LA - ru ID - VMP_2011_12_4_a1 ER -
%0 Journal Article %A I. A. Silantyeva %A P. N. Vorontsov-Velyaminov %T Calculation of the density of states and the thermal properties of polymer %J Numerical methods and programming %D 2011 %P 397-408 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a1/ %G ru %F VMP_2011_12_4_a1
I. A. Silantyeva; P. N. Vorontsov-Velyaminov. Calculation of the density of states and the thermal properties of polymer. Numerical methods and programming, Tome 12 (2011) no. 4, pp. 397-408. http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a1/