Calculation of the density of states and the thermal properties of polymer
Numerical methods and programming, Tome 12 (2011) no. 4, pp. 397-408.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Monte Carlo method with the use of the Wang–Landau algorithm is applied to study the lattice models of free polymer chains and 6-arm polymer stars. The ratio of self-avoiding walks among semi-phantom walks for the chains of length $N\leq 300$ and the stars with the total number $N\leq 720$ of segments is determined. The distribution over the number of monomers' contacts for chains and stars with the number $N=30, 72, 120$ of segments is obtained. Based on this distribution, the temperature dependences are found for the internal energy, the heat capacity, and the entropy.
Keywords: polymer star; Wang-Landau algorithm.
@article{VMP_2011_12_4_a1,
     author = {I. A. Silantyeva and P. N. Vorontsov-Velyaminov},
     title = {Calculation of the density of states and the thermal properties of polymer},
     journal = {Numerical methods and programming},
     pages = {397--408},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a1/}
}
TY  - JOUR
AU  - I. A. Silantyeva
AU  - P. N. Vorontsov-Velyaminov
TI  - Calculation of the density of states and the thermal properties of polymer
JO  - Numerical methods and programming
PY  - 2011
SP  - 397
EP  - 408
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a1/
LA  - ru
ID  - VMP_2011_12_4_a1
ER  - 
%0 Journal Article
%A I. A. Silantyeva
%A P. N. Vorontsov-Velyaminov
%T Calculation of the density of states and the thermal properties of polymer
%J Numerical methods and programming
%D 2011
%P 397-408
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a1/
%G ru
%F VMP_2011_12_4_a1
I. A. Silantyeva; P. N. Vorontsov-Velyaminov. Calculation of the density of states and the thermal properties of polymer. Numerical methods and programming, Tome 12 (2011) no. 4, pp. 397-408. http://geodesic.mathdoc.fr/item/VMP_2011_12_4_a1/