A continuum solvent model: the DISOLV program - algorithms, implementation,
Numerical methods and programming, Tome 12 (2011) no. 2, pp. 247-261
Voir la notice de l'article provenant de la source Math-Net.Ru
Several implicit (continuum) solvent models are considered: the Polarized Continuum
Model (PCM), the Surface Generalized Born model (SGB), and the
COnductor-like Screening МОdel (COSMO) as well as their implementation in
the form of the DISOLV program. The methods for solving the corresponding equations
and for computing the analytic gradients are described. The analytic gradients
are used for the fast local energy optimization of molecules in a solvent. An
algorithm for the original smooth triangulated molecular surface construction is
shortly discussed. The procedure for matching the model parameters and the results
of the program application to proteins and ligands with the employment of the
MMFF94 force field are described. The validation results show the capability of
the program to reach a good accuracy (about several tenth of kcal/mol) in the case
of the solvation energy calculation for reasonable time periods at arbitrary
shifts of the triangulated grid in use for such large molecules as proteins. A
good agreement between the calculated and experimentally measured solvation
energies in water is obtained with a root-mean-square deviation about $0.8$ kcal/mol for several hundreds of molecules.
Keywords:
polarized continuum model; conductor-like screening model; surface generalized Born model; solvation; implicit solvation model; computer-aided drug design; solvent excluded surface; solvent accessible surface; triangulation; non-polar interactions; polar interactions; force field.
@article{VMP_2011_12_2_a5,
author = {O. Yu. Kupervasser and S. N. Zhabin and Ya. B. Martynov and K. M. Fedulov and I. V. Oferkin and A. V. Sulimov and V. B. Sulimov},
title = {A continuum solvent model: the {DISOLV} program - algorithms, implementation,},
journal = {Numerical methods and programming},
pages = {247--261},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a5/}
}
TY - JOUR AU - O. Yu. Kupervasser AU - S. N. Zhabin AU - Ya. B. Martynov AU - K. M. Fedulov AU - I. V. Oferkin AU - A. V. Sulimov AU - V. B. Sulimov TI - A continuum solvent model: the DISOLV program - algorithms, implementation, JO - Numerical methods and programming PY - 2011 SP - 247 EP - 261 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a5/ LA - ru ID - VMP_2011_12_2_a5 ER -
%0 Journal Article %A O. Yu. Kupervasser %A S. N. Zhabin %A Ya. B. Martynov %A K. M. Fedulov %A I. V. Oferkin %A A. V. Sulimov %A V. B. Sulimov %T A continuum solvent model: the DISOLV program - algorithms, implementation, %J Numerical methods and programming %D 2011 %P 247-261 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a5/ %G ru %F VMP_2011_12_2_a5
O. Yu. Kupervasser; S. N. Zhabin; Ya. B. Martynov; K. M. Fedulov; I. V. Oferkin; A. V. Sulimov; V. B. Sulimov. A continuum solvent model: the DISOLV program - algorithms, implementation,. Numerical methods and programming, Tome 12 (2011) no. 2, pp. 247-261. http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a5/