Modeling of potential flows with unknown boundaries on the basis
Numerical methods and programming, Tome 12 (2011) no. 2, pp. 213-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method to model the detached flows at the inlet of a suction port in multiply connected regions with cuts (fine visors) is proposed. The method allows one to construct free streamlines and velocity fields and to determine the local drag coefficient at the inlets of such channels. The reliability and adequacy of the method are demonstrated by comparison with numerical results obtained by the Zhukovskii method and with experimental data. A number of dependencies are found between the detached flow parameters at the inlet of a plane channel with two visors and their location and geometric sizes.
Keywords: detached flow; method of discrete vortices; local drag coefficient.
@article{VMP_2011_12_2_a0,
     author = {O. A. Averkova and I. N. Logachev and K. I. Logachev},
     title = {Modeling of potential flows with unknown boundaries on the basis},
     journal = {Numerical methods and programming},
     pages = {213--219},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a0/}
}
TY  - JOUR
AU  - O. A. Averkova
AU  - I. N. Logachev
AU  - K. I. Logachev
TI  - Modeling of potential flows with unknown boundaries on the basis
JO  - Numerical methods and programming
PY  - 2011
SP  - 213
EP  - 219
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a0/
LA  - ru
ID  - VMP_2011_12_2_a0
ER  - 
%0 Journal Article
%A O. A. Averkova
%A I. N. Logachev
%A K. I. Logachev
%T Modeling of potential flows with unknown boundaries on the basis
%J Numerical methods and programming
%D 2011
%P 213-219
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a0/
%G ru
%F VMP_2011_12_2_a0
O. A. Averkova; I. N. Logachev; K. I. Logachev. Modeling of potential flows with unknown boundaries on the basis. Numerical methods and programming, Tome 12 (2011) no. 2, pp. 213-219. http://geodesic.mathdoc.fr/item/VMP_2011_12_2_a0/