On an algorithmic feasibility of source conditions in iterative
Numerical methods and programming, Tome 12 (2011) no. 1, pp. 146-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

A relation between an algorithmic feasibility of source conditions in iterative methods for solving irregular nonlinear problems and the "$\mathcal P=\mathcal N\mathcal P$?" problem is established. On this basis, we estimate the possibilities of polynomial-time algorithmic satisfaction of these conditions.
Keywords: irregular equation; iterative method; source condition; complexity; polynomial algorithm.
@article{VMP_2011_12_1_a17,
     author = {M. Yu. Kokurin},
     title = {On an algorithmic feasibility of source conditions in iterative},
     journal = {Numerical methods and programming},
     pages = {146--151},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a17/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
TI  - On an algorithmic feasibility of source conditions in iterative
JO  - Numerical methods and programming
PY  - 2011
SP  - 146
EP  - 151
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a17/
LA  - ru
ID  - VMP_2011_12_1_a17
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%T On an algorithmic feasibility of source conditions in iterative
%J Numerical methods and programming
%D 2011
%P 146-151
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a17/
%G ru
%F VMP_2011_12_1_a17
M. Yu. Kokurin. On an algorithmic feasibility of source conditions in iterative. Numerical methods and programming, Tome 12 (2011) no. 1, pp. 146-151. http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a17/