A parallel algorithm for numerical solution of three-dimensional
Numerical methods and programming, Tome 12 (2011) no. 1, pp. 128-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite-volume method for numerical solution of three-dimensional Maxwell's equations with discontinuous dielectric permittivity on prismatic meshes is proposed. The method enables one to perform calculations for the discontinuity of dielectric permittivity along an arbitrary smooth cylinder. The numerical algorithm based on this method allows an efficient parallel implementation with the help of the geometric decomposition technique for use on parallel computers. Numerical results show the second order of convergence of the method proposed and a high efficiency of its parallel implementation.
Keywords: Maxwell's equations; finite-volume method; prismatic mesh; Godunov's scheme; discontinuous dielectric permittivity.
@article{VMP_2011_12_1_a15,
     author = {T. Z. Ismagilov and A. I. Gorbachev},
     title = {A parallel algorithm for numerical solution of three-dimensional},
     journal = {Numerical methods and programming},
     pages = {128--136},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a15/}
}
TY  - JOUR
AU  - T. Z. Ismagilov
AU  - A. I. Gorbachev
TI  - A parallel algorithm for numerical solution of three-dimensional
JO  - Numerical methods and programming
PY  - 2011
SP  - 128
EP  - 136
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a15/
LA  - ru
ID  - VMP_2011_12_1_a15
ER  - 
%0 Journal Article
%A T. Z. Ismagilov
%A A. I. Gorbachev
%T A parallel algorithm for numerical solution of three-dimensional
%J Numerical methods and programming
%D 2011
%P 128-136
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a15/
%G ru
%F VMP_2011_12_1_a15
T. Z. Ismagilov; A. I. Gorbachev. A parallel algorithm for numerical solution of three-dimensional. Numerical methods and programming, Tome 12 (2011) no. 1, pp. 128-136. http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a15/