A parallel algorithm for numerical solution of three-dimensional
Numerical methods and programming, Tome 12 (2011) no. 1, pp. 128-136
Voir la notice de l'article provenant de la source Math-Net.Ru
A finite-volume method for numerical solution of three-dimensional Maxwell's
equations with discontinuous dielectric permittivity on prismatic meshes is
proposed. The method enables one to perform calculations for the discontinuity of
dielectric permittivity along an arbitrary smooth cylinder. The numerical algorithm
based on this method allows an efficient parallel implementation with the help of
the geometric decomposition technique for use on parallel computers. Numerical results
show the second order of convergence of the method proposed and a high efficiency of
its parallel implementation.
Keywords:
Maxwell's equations; finite-volume method; prismatic mesh; Godunov's scheme; discontinuous dielectric permittivity.
@article{VMP_2011_12_1_a15,
author = {T. Z. Ismagilov and A. I. Gorbachev},
title = {A parallel algorithm for numerical solution of three-dimensional},
journal = {Numerical methods and programming},
pages = {128--136},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2011},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a15/}
}
TY - JOUR AU - T. Z. Ismagilov AU - A. I. Gorbachev TI - A parallel algorithm for numerical solution of three-dimensional JO - Numerical methods and programming PY - 2011 SP - 128 EP - 136 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a15/ LA - ru ID - VMP_2011_12_1_a15 ER -
T. Z. Ismagilov; A. I. Gorbachev. A parallel algorithm for numerical solution of three-dimensional. Numerical methods and programming, Tome 12 (2011) no. 1, pp. 128-136. http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a15/