A parallel SSOR preconditioner for solving the problems of electromagnetism
Numerical methods and programming, Tome 12 (2011) no. 1, pp. 120-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several approaches to the parallelization of a symmetric successive overrelaxation (SSOR) preconditioner in the Eisenstat modification are considered. This preconditioner is used for the iterative solving of linear systems resulting from the approximation of the corresponding variational problems of electromagnetism. The parallelization of the preconditioner is based on a computational domain decomposition (including the algebraic one) with a joint matrix reordering. Special efforts are spent to ensure a high performance of the preconditioner on NUMA-architectures. The numerical results obtained confirm a high level of performance and scalability of the proposed algorithms.
Keywords: preconditioners; parallel algorithms; domain decomposition; NUMA-architectures.
@article{VMP_2011_12_1_a14,
     author = {D. S. Butyugin},
     title = {A parallel {SSOR} preconditioner for solving the problems of electromagnetism},
     journal = {Numerical methods and programming},
     pages = {120--127},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a14/}
}
TY  - JOUR
AU  - D. S. Butyugin
TI  - A parallel SSOR preconditioner for solving the problems of electromagnetism
JO  - Numerical methods and programming
PY  - 2011
SP  - 120
EP  - 127
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a14/
LA  - ru
ID  - VMP_2011_12_1_a14
ER  - 
%0 Journal Article
%A D. S. Butyugin
%T A parallel SSOR preconditioner for solving the problems of electromagnetism
%J Numerical methods and programming
%D 2011
%P 120-127
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a14/
%G ru
%F VMP_2011_12_1_a14
D. S. Butyugin. A parallel SSOR preconditioner for solving the problems of electromagnetism. Numerical methods and programming, Tome 12 (2011) no. 1, pp. 120-127. http://geodesic.mathdoc.fr/item/VMP_2011_12_1_a14/