A parallel mesh partitioning tool
Numerical methods and programming, Tome 11 (2010) no. 4, pp. 360-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

The geometric parallelism is often used for the numerical solution of problems in the field of mathematical physics on distributed memory systems. As a result, there arises the problem of balanced mesh distribution among processors. This problem can be reduced to the graph partitioning problem. The parallel decomposition of large triangular and tetrahedral meshes is the aim of this paper. A parallel mesh partitioning tool is developed on the basis of the incremental algorithm for graph partitioning and the recursive coordinate bisection algorithm. The work was supported by the Russian Foundation for Basic Research (projects 05-01-00750, 08-07-00458, and 09-01-12022).
Keywords: graph partitioning; mesh partitioning; parallel computing.
@article{VMP_2010_11_4_a7,
     author = {E. N. Golovchenko},
     title = {A parallel mesh partitioning tool},
     journal = {Numerical methods and programming},
     pages = {360--365},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a7/}
}
TY  - JOUR
AU  - E. N. Golovchenko
TI  - A parallel mesh partitioning tool
JO  - Numerical methods and programming
PY  - 2010
SP  - 360
EP  - 365
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a7/
LA  - ru
ID  - VMP_2010_11_4_a7
ER  - 
%0 Journal Article
%A E. N. Golovchenko
%T A parallel mesh partitioning tool
%J Numerical methods and programming
%D 2010
%P 360-365
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a7/
%G ru
%F VMP_2010_11_4_a7
E. N. Golovchenko. A parallel mesh partitioning tool. Numerical methods and programming, Tome 11 (2010) no. 4, pp. 360-365. http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a7/