Local search for nonconvex optimal control problems of Bolza
Numerical methods and programming, Tome 11 (2010) no. 4, pp. 344-350
Cet article a éte moissonné depuis la source Math-Net.Ru
A nonconvex optimal control problem whose nonconvexity is generated by an integro-terminal objective functional is considered. A new local search method that allows obtaining a control process $(x_*(\cdot), u_*(\cdot))$ satisfying, in particular, Pontryagin's maximum principle is proposed. Some peculiar properties of convergence of the algorithm are studied. Furthermore, some preliminary numerical simulations have been conducted the results of which certify a rather competitive efficiency of the algorithm.
Keywords:
nonconvex optimal control problems; Pontryagin's maximum principle; local search algorithm.
@article{VMP_2010_11_4_a5,
author = {A. S. Strekalovskii},
title = {Local search for nonconvex optimal control problems of {Bolza}},
journal = {Numerical methods and programming},
pages = {344--350},
year = {2010},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a5/}
}
A. S. Strekalovskii. Local search for nonconvex optimal control problems of Bolza. Numerical methods and programming, Tome 11 (2010) no. 4, pp. 344-350. http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a5/