Local search for nonconvex optimal control problems of Bolza
Numerical methods and programming, Tome 11 (2010) no. 4, pp. 344-350
Voir la notice de l'article provenant de la source Math-Net.Ru
A nonconvex optimal control problem whose nonconvexity is
generated by an integro-terminal objective functional is considered.
A new local search method that allows obtaining a control process
$(x_*(\cdot), u_*(\cdot))$ satisfying, in particular, Pontryagin's
maximum principle is proposed. Some peculiar properties of convergence of
the algorithm are studied. Furthermore, some preliminary
numerical simulations have been conducted the results of which
certify a rather competitive efficiency of the algorithm.
Keywords:
nonconvex optimal control problems; Pontryagin's maximum principle; local search algorithm.
@article{VMP_2010_11_4_a5,
author = {A. S. Strekalovskii},
title = {Local search for nonconvex optimal control problems of {Bolza}},
journal = {Numerical methods and programming},
pages = {344--350},
publisher = {mathdoc},
volume = {11},
number = {4},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a5/}
}
A. S. Strekalovskii. Local search for nonconvex optimal control problems of Bolza. Numerical methods and programming, Tome 11 (2010) no. 4, pp. 344-350. http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a5/