Development of parallel algorithms for solving the problems of gravitational gas dynamics
Numerical methods and programming, Tome 11 (2010) no. 4, pp. 388-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two difference schemes of the total variation diminishing (TVD) type are proposed for solving the two- and three-dimensional equations of gravitational gas dynamics. The accuracy of these algorithms was certified on a number of test problems: the interaction between a shock wave and a region of low density gas, the formation of a shock wave and a vortex, and the simulation of gas-cloud self-gravity processes. The numerical results show that the proposed difference schemes and the corresponding computer programs allow one to solve problems of gravitational gas dynamics with a sufficient accuracy.
Keywords: mathematical modeling; gas dynamics; graphics processors.
@article{VMP_2010_11_4_a11,
     author = {B. P. Rybakin and N. I. Shider},
     title = {Development of parallel algorithms for solving the problems of gravitational gas dynamics},
     journal = {Numerical methods and programming},
     pages = {388--394},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a11/}
}
TY  - JOUR
AU  - B. P. Rybakin
AU  - N. I. Shider
TI  - Development of parallel algorithms for solving the problems of gravitational gas dynamics
JO  - Numerical methods and programming
PY  - 2010
SP  - 388
EP  - 394
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a11/
LA  - ru
ID  - VMP_2010_11_4_a11
ER  - 
%0 Journal Article
%A B. P. Rybakin
%A N. I. Shider
%T Development of parallel algorithms for solving the problems of gravitational gas dynamics
%J Numerical methods and programming
%D 2010
%P 388-394
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a11/
%G ru
%F VMP_2010_11_4_a11
B. P. Rybakin; N. I. Shider. Development of parallel algorithms for solving the problems of gravitational gas dynamics. Numerical methods and programming, Tome 11 (2010) no. 4, pp. 388-394. http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a11/