An approach to solving the problem of observation structure optimization
Numerical methods and programming, Tome 11 (2010) no. 4, pp. 313-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for optimizing the structure of an observation system is proposed on the basis of the duality of linear optimal filtration and quadratic control. The work was supported by the Russian Foundation for Basic Research (project 10-01-00297a.
Keywords: optimization; optimal filtration; quadratic control; measurement processing; dynamical systems.
@article{VMP_2010_11_4_a1,
     author = {I. V. Kolos and M. V. Kolos},
     title = {An approach to solving the problem of observation structure optimization},
     journal = {Numerical methods and programming},
     pages = {313--317},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a1/}
}
TY  - JOUR
AU  - I. V. Kolos
AU  - M. V. Kolos
TI  - An approach to solving the problem of observation structure optimization
JO  - Numerical methods and programming
PY  - 2010
SP  - 313
EP  - 317
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a1/
LA  - ru
ID  - VMP_2010_11_4_a1
ER  - 
%0 Journal Article
%A I. V. Kolos
%A M. V. Kolos
%T An approach to solving the problem of observation structure optimization
%J Numerical methods and programming
%D 2010
%P 313-317
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a1/
%G ru
%F VMP_2010_11_4_a1
I. V. Kolos; M. V. Kolos. An approach to solving the problem of observation structure optimization. Numerical methods and programming, Tome 11 (2010) no. 4, pp. 313-317. http://geodesic.mathdoc.fr/item/VMP_2010_11_4_a1/