The fundamental matrix for the Jacobi equation with random coefficients
Numerical methods and programming, Tome 11 (2010) no. 3, pp. 261-268
Voir la notice de l'article provenant de la source Math-Net.Ru
A numerical simulation of the fundamental matrix for the Jacobi equation
with random curvature is performed. The results are given for the two
representations of the fundamental matrix. The first one is specified by the
physical interpretation of the solution, whereas the second one is due to the
characteristics of the matrix itself. The specific features of these
representations are discussed. The behavior of the fundamental matrix corresponds
to the main theoretical concepts based on the known theorems concerning the
product of large numbers of unimodular random matrices and sometimes
complements these concepts.
Mots-clés :
fundamental matrix; random coefficients; Jacobi equation.
@article{VMP_2010_11_3_a6,
author = {E. A. Mikhaylov and D. D. Sokoloff and V. N. Tutubalin},
title = {The fundamental matrix for the {Jacobi} equation with random coefficients},
journal = {Numerical methods and programming},
pages = {261--268},
publisher = {mathdoc},
volume = {11},
number = {3},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_3_a6/}
}
TY - JOUR AU - E. A. Mikhaylov AU - D. D. Sokoloff AU - V. N. Tutubalin TI - The fundamental matrix for the Jacobi equation with random coefficients JO - Numerical methods and programming PY - 2010 SP - 261 EP - 268 VL - 11 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2010_11_3_a6/ LA - ru ID - VMP_2010_11_3_a6 ER -
%0 Journal Article %A E. A. Mikhaylov %A D. D. Sokoloff %A V. N. Tutubalin %T The fundamental matrix for the Jacobi equation with random coefficients %J Numerical methods and programming %D 2010 %P 261-268 %V 11 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2010_11_3_a6/ %G ru %F VMP_2010_11_3_a6
E. A. Mikhaylov; D. D. Sokoloff; V. N. Tutubalin. The fundamental matrix for the Jacobi equation with random coefficients. Numerical methods and programming, Tome 11 (2010) no. 3, pp. 261-268. http://geodesic.mathdoc.fr/item/VMP_2010_11_3_a6/