Convergence rate estimation for finite-difference methods
Numerical methods and programming, Tome 11 (2010) no. 1, pp. 25-31
Voir la notice de l'article provenant de la source Math-Net.Ru
A class of finite-difference methods for solving the ill-posed Cauchy
problem for second-order linear differential equations with sectorial
operators in a Banach space is studied. Several convergence rate estimates
for finite-difference approximations are proposed under some prior
assumptions on the solution to the Cauchy problem.
Keywords:
operator differential equation; Cauchy problem; ill-posed problem; sectorial operator; finite-difference methods.
@article{VMP_2010_11_1_a3,
author = {A. B. Bakushinskii and M. Yu. Kokurin and V. V. Klyuchev},
title = {Convergence rate estimation for finite-difference methods},
journal = {Numerical methods and programming},
pages = {25--31},
publisher = {mathdoc},
volume = {11},
number = {1},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a3/}
}
TY - JOUR AU - A. B. Bakushinskii AU - M. Yu. Kokurin AU - V. V. Klyuchev TI - Convergence rate estimation for finite-difference methods JO - Numerical methods and programming PY - 2010 SP - 25 EP - 31 VL - 11 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a3/ LA - ru ID - VMP_2010_11_1_a3 ER -
A. B. Bakushinskii; M. Yu. Kokurin; V. V. Klyuchev. Convergence rate estimation for finite-difference methods. Numerical methods and programming, Tome 11 (2010) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a3/