Convergence rate estimation for finite-difference methods
Numerical methods and programming, Tome 11 (2010) no. 1, pp. 25-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of finite-difference methods for solving the ill-posed Cauchy problem for second-order linear differential equations with sectorial operators in a Banach space is studied. Several convergence rate estimates for finite-difference approximations are proposed under some prior assumptions on the solution to the Cauchy problem.
Keywords: operator differential equation; Cauchy problem; ill-posed problem; sectorial operator; finite-difference methods.
@article{VMP_2010_11_1_a3,
     author = {A. B. Bakushinskii and M. Yu. Kokurin and V. V. Klyuchev},
     title = {Convergence rate estimation for finite-difference methods},
     journal = {Numerical methods and programming},
     pages = {25--31},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a3/}
}
TY  - JOUR
AU  - A. B. Bakushinskii
AU  - M. Yu. Kokurin
AU  - V. V. Klyuchev
TI  - Convergence rate estimation for finite-difference methods
JO  - Numerical methods and programming
PY  - 2010
SP  - 25
EP  - 31
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a3/
LA  - ru
ID  - VMP_2010_11_1_a3
ER  - 
%0 Journal Article
%A A. B. Bakushinskii
%A M. Yu. Kokurin
%A V. V. Klyuchev
%T Convergence rate estimation for finite-difference methods
%J Numerical methods and programming
%D 2010
%P 25-31
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a3/
%G ru
%F VMP_2010_11_1_a3
A. B. Bakushinskii; M. Yu. Kokurin; V. V. Klyuchev. Convergence rate estimation for finite-difference methods. Numerical methods and programming, Tome 11 (2010) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a3/