On a posteriori accuracy estimates for solutions of linear
Numerical methods and programming, Tome 11 (2010) no. 1, pp. 14-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new scheme of an a posteriori accuracy estimate for solutions of linear ill-posed problems is proposed along with an algorithm of its calculation. A new notion of an extra-optimal regularizing algorithm is introduced as a method for solving ill-posed problems with an a posteriori accuracy estimate optimal in order. An example of an optimal-in-order method being not extra-optimal is discussed. The developed theory is illustrated by a numerical experiment.
Keywords: ill-posed problems; regularizing algorithms; a posteriori accuracy estimates; extra-optimal algorithm.
@article{VMP_2010_11_1_a2,
     author = {A. S. Leonov},
     title = {On a posteriori accuracy estimates for solutions of linear},
     journal = {Numerical methods and programming},
     pages = {14--24},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a2/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - On a posteriori accuracy estimates for solutions of linear
JO  - Numerical methods and programming
PY  - 2010
SP  - 14
EP  - 24
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a2/
LA  - ru
ID  - VMP_2010_11_1_a2
ER  - 
%0 Journal Article
%A A. S. Leonov
%T On a posteriori accuracy estimates for solutions of linear
%J Numerical methods and programming
%D 2010
%P 14-24
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a2/
%G ru
%F VMP_2010_11_1_a2
A. S. Leonov. On a posteriori accuracy estimates for solutions of linear. Numerical methods and programming, Tome 11 (2010) no. 1, pp. 14-24. http://geodesic.mathdoc.fr/item/VMP_2010_11_1_a2/