On properties of a class of coefficient inverse problems for parabolic equations with a final observation
Numerical methods and programming, Tome 10 (2009) no. 2, pp. 176-183
Voir la notice de l'article provenant de la source Math-Net.Ru
The questions of statements in Hoelder spaces are studied in the case of inverse problems with boundary conditions of the third kind for general linear and quasilinear parabolic operators with unknown coefficients at the lowest terms. Some sufficient uniqueness conditions for the solutions are derived by using the duality principle. Such an approach allows one to consider the given coefficients of parabolic equations depending not only on the variable $x$ but also on $(x,t)$ in the linear case and on $(x,t,u)$ in the quasilinear case.
Keywords:
Hoelder spaces; inverse problems; parabolic equations; boundary value problems; duality principle.
@article{VMP_2009_10_2_a1,
author = {N. L. Gol'dman},
title = {On properties of a class of coefficient inverse problems for parabolic equations with a final observation},
journal = {Numerical methods and programming},
pages = {176--183},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2009_10_2_a1/}
}
TY - JOUR AU - N. L. Gol'dman TI - On properties of a class of coefficient inverse problems for parabolic equations with a final observation JO - Numerical methods and programming PY - 2009 SP - 176 EP - 183 VL - 10 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2009_10_2_a1/ LA - ru ID - VMP_2009_10_2_a1 ER -
%0 Journal Article %A N. L. Gol'dman %T On properties of a class of coefficient inverse problems for parabolic equations with a final observation %J Numerical methods and programming %D 2009 %P 176-183 %V 10 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2009_10_2_a1/ %G ru %F VMP_2009_10_2_a1
N. L. Gol'dman. On properties of a class of coefficient inverse problems for parabolic equations with a final observation. Numerical methods and programming, Tome 10 (2009) no. 2, pp. 176-183. http://geodesic.mathdoc.fr/item/VMP_2009_10_2_a1/