On properties of a class of coefficient inverse problems for parabolic equations with a final observation
Numerical methods and programming, Tome 10 (2009) no. 2, pp. 176-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

The questions of statements in Hoelder spaces are studied in the case of inverse problems with boundary conditions of the third kind for general linear and quasilinear parabolic operators with unknown coefficients at the lowest terms. Some sufficient uniqueness conditions for the solutions are derived by using the duality principle. Such an approach allows one to consider the given coefficients of parabolic equations depending not only on the variable $x$ but also on $(x,t)$ in the linear case and on $(x,t,u)$ in the quasilinear case.
Keywords: Hoelder spaces; inverse problems; parabolic equations; boundary value problems; duality principle.
@article{VMP_2009_10_2_a1,
     author = {N. L. Gol'dman},
     title = {On properties of a class of coefficient inverse problems for parabolic equations with a final observation},
     journal = {Numerical methods and programming},
     pages = {176--183},
     publisher = {mathdoc},
     volume = {10},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2009_10_2_a1/}
}
TY  - JOUR
AU  - N. L. Gol'dman
TI  - On properties of a class of coefficient inverse problems for parabolic equations with a final observation
JO  - Numerical methods and programming
PY  - 2009
SP  - 176
EP  - 183
VL  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2009_10_2_a1/
LA  - ru
ID  - VMP_2009_10_2_a1
ER  - 
%0 Journal Article
%A N. L. Gol'dman
%T On properties of a class of coefficient inverse problems for parabolic equations with a final observation
%J Numerical methods and programming
%D 2009
%P 176-183
%V 10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2009_10_2_a1/
%G ru
%F VMP_2009_10_2_a1
N. L. Gol'dman. On properties of a class of coefficient inverse problems for parabolic equations with a final observation. Numerical methods and programming, Tome 10 (2009) no. 2, pp. 176-183. http://geodesic.mathdoc.fr/item/VMP_2009_10_2_a1/