An error estimate for approximate solutions to elliptic equations with non-coercive bilinear form
Numerical methods and programming, Tome 10 (2009) no. 1, pp. 34-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

An error estimation algorithm for approximate solutions to elliptic equations is proposed. This algorithm is based on the Nakao method and is also suitable in the case when the bilinear form of the problem under study is not coercive. For Helmholtz-type equations, another method is developed on the basis of the Nakao method to obtain a more accurate estimate. Some numerical results are given to illustrate the error estimates calculated by these methods.
Keywords: elliptic equations; projection methods; finite element method; error estimate.
@article{VMP_2009_10_1_a4,
     author = {A. N. Bogolyubov and A. A. Panin},
     title = {An error estimate for approximate solutions to elliptic equations with non-coercive bilinear form},
     journal = {Numerical methods and programming},
     pages = {34--48},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a4/}
}
TY  - JOUR
AU  - A. N. Bogolyubov
AU  - A. A. Panin
TI  - An error estimate for approximate solutions to elliptic equations with non-coercive bilinear form
JO  - Numerical methods and programming
PY  - 2009
SP  - 34
EP  - 48
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a4/
LA  - ru
ID  - VMP_2009_10_1_a4
ER  - 
%0 Journal Article
%A A. N. Bogolyubov
%A A. A. Panin
%T An error estimate for approximate solutions to elliptic equations with non-coercive bilinear form
%J Numerical methods and programming
%D 2009
%P 34-48
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a4/
%G ru
%F VMP_2009_10_1_a4
A. N. Bogolyubov; A. A. Panin. An error estimate for approximate solutions to elliptic equations with non-coercive bilinear form. Numerical methods and programming, Tome 10 (2009) no. 1, pp. 34-48. http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a4/