A parallel algorithm of the finite-volume method for solving
Numerical methods and programming, Tome 10 (2009) no. 1, pp. 28-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

An efficient parallel algorithm of the finite-volume method is proposed for the three-dimensional modeling of electromagnetic phenomena in metamaterials (artificial nanostructured media). The algorithm is parallelized for a high-performance computing environment using the domain decomposition approach and is modified for an accurate modeling of complex nanocomposite media, such as most of metamaterials are. These techniques are illustrated by numerical modeling of a hyperlens (a strongly anisotropic metamaterial device that allows one to overcome the diffraction limit of conventional optical imaging).
Keywords: Maxwell equations; mathematical modeling; finite-volume method; parallel algorithms; metamaterials.
@article{VMP_2009_10_1_a3,
     author = {L. Yu. Prokopeva and M. P. Fedoruk and A. S. Lebedev},
     title = {A parallel algorithm of the finite-volume method for solving},
     journal = {Numerical methods and programming},
     pages = {28--33},
     publisher = {mathdoc},
     volume = {10},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a3/}
}
TY  - JOUR
AU  - L. Yu. Prokopeva
AU  - M. P. Fedoruk
AU  - A. S. Lebedev
TI  - A parallel algorithm of the finite-volume method for solving
JO  - Numerical methods and programming
PY  - 2009
SP  - 28
EP  - 33
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a3/
LA  - ru
ID  - VMP_2009_10_1_a3
ER  - 
%0 Journal Article
%A L. Yu. Prokopeva
%A M. P. Fedoruk
%A A. S. Lebedev
%T A parallel algorithm of the finite-volume method for solving
%J Numerical methods and programming
%D 2009
%P 28-33
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a3/
%G ru
%F VMP_2009_10_1_a3
L. Yu. Prokopeva; M. P. Fedoruk; A. S. Lebedev. A parallel algorithm of the finite-volume method for solving. Numerical methods and programming, Tome 10 (2009) no. 1, pp. 28-33. http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a3/