A parallel algorithm of the finite-volume method for solving
Numerical methods and programming, Tome 10 (2009) no. 1, pp. 28-33
Voir la notice de l'article provenant de la source Math-Net.Ru
An efficient parallel algorithm of the finite-volume method is proposed for the three-dimensional modeling of electromagnetic phenomena in metamaterials (artificial nanostructured media). The algorithm is parallelized for a high-performance computing environment using the domain decomposition approach and
is modified for an accurate modeling of complex nanocomposite media, such as most of metamaterials are. These techniques are illustrated by numerical modeling of a hyperlens (a strongly anisotropic metamaterial device that allows one to overcome the diffraction limit
of conventional optical imaging).
Keywords:
Maxwell equations; mathematical modeling; finite-volume method; parallel algorithms; metamaterials.
@article{VMP_2009_10_1_a3,
author = {L. Yu. Prokopeva and M. P. Fedoruk and A. S. Lebedev},
title = {A parallel algorithm of the finite-volume method for solving},
journal = {Numerical methods and programming},
pages = {28--33},
publisher = {mathdoc},
volume = {10},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a3/}
}
TY - JOUR AU - L. Yu. Prokopeva AU - M. P. Fedoruk AU - A. S. Lebedev TI - A parallel algorithm of the finite-volume method for solving JO - Numerical methods and programming PY - 2009 SP - 28 EP - 33 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a3/ LA - ru ID - VMP_2009_10_1_a3 ER -
L. Yu. Prokopeva; M. P. Fedoruk; A. S. Lebedev. A parallel algorithm of the finite-volume method for solving. Numerical methods and programming, Tome 10 (2009) no. 1, pp. 28-33. http://geodesic.mathdoc.fr/item/VMP_2009_10_1_a3/