A boundary element method of higher precision in the problems of hydrodynamics of ideal incompressible fluid
Numerical methods and programming, Tome 9 (2008) no. 4, pp. 401-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subject of the research is to study one of the ways of raising the precision of the boundary element method (BEM) and to develop its higher precision version (BEMHP). The efficiency and accuracy of solving the problems by the BEMHP method are discussed. A comparative analysis of numerical results obtained by the BEM and BEMHP methods when solving the problem of flow about a sphere and the problem of supercavitation flow about a disk is given. It is shown that the BEMHP method allows one to compute the sought-for solution sufficiently close to the exact one.
Keywords: numerical methods, boundary elements, hydrodynamics, ideal incompressible fluid, flow about bodies.
@article{VMP_2008_9_4_a2,
     author = {A. N. Khomyakov},
     title = {A boundary element method of higher precision in the problems of hydrodynamics of ideal incompressible fluid},
     journal = {Numerical methods and programming},
     pages = {401--404},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2008_9_4_a2/}
}
TY  - JOUR
AU  - A. N. Khomyakov
TI  - A boundary element method of higher precision in the problems of hydrodynamics of ideal incompressible fluid
JO  - Numerical methods and programming
PY  - 2008
SP  - 401
EP  - 404
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2008_9_4_a2/
LA  - ru
ID  - VMP_2008_9_4_a2
ER  - 
%0 Journal Article
%A A. N. Khomyakov
%T A boundary element method of higher precision in the problems of hydrodynamics of ideal incompressible fluid
%J Numerical methods and programming
%D 2008
%P 401-404
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2008_9_4_a2/
%G ru
%F VMP_2008_9_4_a2
A. N. Khomyakov. A boundary element method of higher precision in the problems of hydrodynamics of ideal incompressible fluid. Numerical methods and programming, Tome 9 (2008) no. 4, pp. 401-404. http://geodesic.mathdoc.fr/item/VMP_2008_9_4_a2/