Practical optimization of a three-parametric iteration method for the numerical calculation of Bingham fluid flows
Numerical methods and programming, Tome 9 (2008) no. 1, pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

Practical optimization of a three-parametric iteration method for the numerical calculation of Bingham fluid flows is studied. This method is a generalization of the widely-known Arrow-Hurwitz algorithm. The most difficult aspect of the method's practical implementation is the identification of optimal iteration parameters. An optimal parameter search algorithm is proposed and its practical computer implementation is discussed.
Keywords: tri-parametric method, optimal parameters, Bingham fluid, optimization of iterative parameters.
@article{VMP_2008_9_1_a4,
     author = {S. V. Milyutin},
     title = {Practical optimization of a three-parametric iteration method for the numerical calculation of {Bingham} fluid flows},
     journal = {Numerical methods and programming},
     pages = {34--39},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2008_9_1_a4/}
}
TY  - JOUR
AU  - S. V. Milyutin
TI  - Practical optimization of a three-parametric iteration method for the numerical calculation of Bingham fluid flows
JO  - Numerical methods and programming
PY  - 2008
SP  - 34
EP  - 39
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2008_9_1_a4/
LA  - ru
ID  - VMP_2008_9_1_a4
ER  - 
%0 Journal Article
%A S. V. Milyutin
%T Practical optimization of a three-parametric iteration method for the numerical calculation of Bingham fluid flows
%J Numerical methods and programming
%D 2008
%P 34-39
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2008_9_1_a4/
%G ru
%F VMP_2008_9_1_a4
S. V. Milyutin. Practical optimization of a three-parametric iteration method for the numerical calculation of Bingham fluid flows. Numerical methods and programming, Tome 9 (2008) no. 1, pp. 34-39. http://geodesic.mathdoc.fr/item/VMP_2008_9_1_a4/