Continuous and bounded harmonic functions. Exact and approximate methods
Numerical methods and programming, Tome 8 (2007) no. 1, pp. 38-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of representation of functions harmonic on an open square is considered for the case when these functions satisfy one of the following conditions: a) they have continuous extensions to the closed square and b) they are bounded in the open square. A full description of these classes of harmonic functions is obtained in terms of the properties of boundary values, double-layer potential densities, and the intrinsic properties of harmonic functions in an open square.
Keywords: harmonic functions, double-layer potential, unstable problems, regularization methods, ill-posed problems.
@article{VMP_2007_8_1_a6,
     author = {V. A. Morozov and \`E. M. Muhamadiev and A. B. Nazimov},
     title = {Continuous and bounded harmonic functions. {Exact} and approximate methods},
     journal = {Numerical methods and programming},
     pages = {38--60},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a6/}
}
TY  - JOUR
AU  - V. A. Morozov
AU  - È. M. Muhamadiev
AU  - A. B. Nazimov
TI  - Continuous and bounded harmonic functions. Exact and approximate methods
JO  - Numerical methods and programming
PY  - 2007
SP  - 38
EP  - 60
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a6/
LA  - ru
ID  - VMP_2007_8_1_a6
ER  - 
%0 Journal Article
%A V. A. Morozov
%A È. M. Muhamadiev
%A A. B. Nazimov
%T Continuous and bounded harmonic functions. Exact and approximate methods
%J Numerical methods and programming
%D 2007
%P 38-60
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a6/
%G ru
%F VMP_2007_8_1_a6
V. A. Morozov; È. M. Muhamadiev; A. B. Nazimov. Continuous and bounded harmonic functions. Exact and approximate methods. Numerical methods and programming, Tome 8 (2007) no. 1, pp. 38-60. http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a6/