A finite-dimensional regularized gradient method for solving irregular nonlinear operator equations
Numerical methods and programming, Tome 8 (2007) no. 1, pp. 88-94
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct and study a finite-dimensional iterative process of gradient type for the approximate solution of irregular nonlinear operator equations in a Hilbert space. Convergence properties of the process are studied in the presence of noise in input data. We propose a stopping criterion that ensures to
obtain approximate solutions adequate to the level of errors in input data.
Keywords:
nonlinear equations, irregular operator, gradient methods, stability, operator equations, regular methods.
@article{VMP_2007_8_1_a10,
author = {M. Yu. Kokurin and O. V. Karabanova},
title = {A finite-dimensional regularized gradient method for solving irregular nonlinear operator equations},
journal = {Numerical methods and programming},
pages = {88--94},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a10/}
}
TY - JOUR AU - M. Yu. Kokurin AU - O. V. Karabanova TI - A finite-dimensional regularized gradient method for solving irregular nonlinear operator equations JO - Numerical methods and programming PY - 2007 SP - 88 EP - 94 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a10/ LA - ru ID - VMP_2007_8_1_a10 ER -
%0 Journal Article %A M. Yu. Kokurin %A O. V. Karabanova %T A finite-dimensional regularized gradient method for solving irregular nonlinear operator equations %J Numerical methods and programming %D 2007 %P 88-94 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a10/ %G ru %F VMP_2007_8_1_a10
M. Yu. Kokurin; O. V. Karabanova. A finite-dimensional regularized gradient method for solving irregular nonlinear operator equations. Numerical methods and programming, Tome 8 (2007) no. 1, pp. 88-94. http://geodesic.mathdoc.fr/item/VMP_2007_8_1_a10/