An accelerated parallel projection method for solving the minimum length problem
Numerical methods and programming, Tome 7 (2006) no. 3, pp. 273-277
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of determining the minimum-length vector in the simplex of finite-dimensional Euclidean space is
considered. A finite accelerated parallel algorithm for solving this problem is proposed.
Keywords:
imbedded decomposition method, projection problem, simplex of finite-dimensional Euclidean space, parallel algorithms.
@article{VMP_2006_7_3_a9,
author = {D. V. Dolgy and E. A. Nurminski},
title = {An accelerated parallel projection method for solving the minimum length problem},
journal = {Numerical methods and programming},
pages = {273--277},
publisher = {mathdoc},
volume = {7},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2006_7_3_a9/}
}
TY - JOUR AU - D. V. Dolgy AU - E. A. Nurminski TI - An accelerated parallel projection method for solving the minimum length problem JO - Numerical methods and programming PY - 2006 SP - 273 EP - 277 VL - 7 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2006_7_3_a9/ LA - ru ID - VMP_2006_7_3_a9 ER -
D. V. Dolgy; E. A. Nurminski. An accelerated parallel projection method for solving the minimum length problem. Numerical methods and programming, Tome 7 (2006) no. 3, pp. 273-277. http://geodesic.mathdoc.fr/item/VMP_2006_7_3_a9/