An accelerated parallel projection method for solving the minimum length problem
Numerical methods and programming, Tome 7 (2006) no. 3, pp. 273-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of determining the minimum-length vector in the simplex of finite-dimensional Euclidean space is considered. A finite accelerated parallel algorithm for solving this problem is proposed.
Keywords: imbedded decomposition method, projection problem, simplex of finite-dimensional Euclidean space, parallel algorithms.
@article{VMP_2006_7_3_a9,
     author = {D. V. Dolgy and E. A. Nurminski},
     title = {An accelerated parallel projection method for solving the minimum length problem},
     journal = {Numerical methods and programming},
     pages = {273--277},
     publisher = {mathdoc},
     volume = {7},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2006_7_3_a9/}
}
TY  - JOUR
AU  - D. V. Dolgy
AU  - E. A. Nurminski
TI  - An accelerated parallel projection method for solving the minimum length problem
JO  - Numerical methods and programming
PY  - 2006
SP  - 273
EP  - 277
VL  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2006_7_3_a9/
LA  - ru
ID  - VMP_2006_7_3_a9
ER  - 
%0 Journal Article
%A D. V. Dolgy
%A E. A. Nurminski
%T An accelerated parallel projection method for solving the minimum length problem
%J Numerical methods and programming
%D 2006
%P 273-277
%V 7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2006_7_3_a9/
%G ru
%F VMP_2006_7_3_a9
D. V. Dolgy; E. A. Nurminski. An accelerated parallel projection method for solving the minimum length problem. Numerical methods and programming, Tome 7 (2006) no. 3, pp. 273-277. http://geodesic.mathdoc.fr/item/VMP_2006_7_3_a9/