Wavelet crosscorrelations of two-dimensional signals
Numerical methods and programming, Tome 7 (2006) no. 2, pp. 172-179
Voir la notice de l'article provenant de la source Math-Net.Ru
The crosscorrelation estimation methods for two-dimensional multiscale signals are considered. It is shown that the
wavelet decomposition allows one to estimate the correlation for each scale individually. The structure orientation for different scales can be taken into account when applying anisotropic wavelets. The efficiency and limitations of these methods are illustrated using several test examples.
Keywords:
wavelet correlation, signal processing, crosscorrelation, anisotropic wavelets.
Mots-clés : wavelet decomposition
Mots-clés : wavelet decomposition
@article{VMP_2006_7_2_a1,
author = {I. A. Mizeva and R. A. Stepanov and P. G. Frick},
title = {Wavelet crosscorrelations of two-dimensional signals},
journal = {Numerical methods and programming},
pages = {172--179},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2006_7_2_a1/}
}
TY - JOUR AU - I. A. Mizeva AU - R. A. Stepanov AU - P. G. Frick TI - Wavelet crosscorrelations of two-dimensional signals JO - Numerical methods and programming PY - 2006 SP - 172 EP - 179 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2006_7_2_a1/ LA - ru ID - VMP_2006_7_2_a1 ER -
I. A. Mizeva; R. A. Stepanov; P. G. Frick. Wavelet crosscorrelations of two-dimensional signals. Numerical methods and programming, Tome 7 (2006) no. 2, pp. 172-179. http://geodesic.mathdoc.fr/item/VMP_2006_7_2_a1/