A finite-volume TVD Riemann solver for the 2D shallow water equations
Numerical methods and programming, Tome 7 (2006) no. 1, pp. 108-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite-volume numerical scheme for the initial-boundary value problem with evolutionary 2D shallow water equations is proposed. Contact discontinuities are represented by the approximate Riemann condition. The proposed numerical scheme is adopted to solve the dry-cell problems for dam-break cases. Nonlinear parts of equations are represented by the TVD MUSCL (Total Variation Diminishing, Monotonic Upstream Scheme for Conservation Laws) scheme that preserves monotony and high accuracy in the computational domain.
Keywords: finite-volume schemes, shallow water equation, total variation diminishing algorithm, upstream schemes.
@article{VMP_2006_7_1_a12,
     author = {N. M. Evstigneev},
     title = {A finite-volume {TVD} {Riemann} solver for the {2D} shallow water equations},
     journal = {Numerical methods and programming},
     pages = {108--112},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2006_7_1_a12/}
}
TY  - JOUR
AU  - N. M. Evstigneev
TI  - A finite-volume TVD Riemann solver for the 2D shallow water equations
JO  - Numerical methods and programming
PY  - 2006
SP  - 108
EP  - 112
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2006_7_1_a12/
LA  - ru
ID  - VMP_2006_7_1_a12
ER  - 
%0 Journal Article
%A N. M. Evstigneev
%T A finite-volume TVD Riemann solver for the 2D shallow water equations
%J Numerical methods and programming
%D 2006
%P 108-112
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2006_7_1_a12/
%G ru
%F VMP_2006_7_1_a12
N. M. Evstigneev. A finite-volume TVD Riemann solver for the 2D shallow water equations. Numerical methods and programming, Tome 7 (2006) no. 1, pp. 108-112. http://geodesic.mathdoc.fr/item/VMP_2006_7_1_a12/