Approximate solution of a generalized boundary value problem for hyperbolic-type equations with degeneracy
Numerical methods and programming, Tome 6 (2005) no. 1, pp. 283-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some a priori inequalities with negative norm are obtained for differential hyperbolic-type equations with degeneracy in the case when the right-hand sides belong to the space of generalized functions. The existence and uniqueness of the generalized solution as well as the convergence of the proposed approximate method are proved. The work was supported by the Russian Foundation for Basic Research (04-01-00026).
Keywords: hyperbolic-type differential equations, generalized functions, boundary value problems, a priori inequalities.
@article{VMP_2005_6_1_a27,
     author = {I. V. Kolos and M. V. Kolos},
     title = {Approximate solution of a generalized boundary value problem for hyperbolic-type equations with degeneracy},
     journal = {Numerical methods and programming},
     pages = {283--289},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2005_6_1_a27/}
}
TY  - JOUR
AU  - I. V. Kolos
AU  - M. V. Kolos
TI  - Approximate solution of a generalized boundary value problem for hyperbolic-type equations with degeneracy
JO  - Numerical methods and programming
PY  - 2005
SP  - 283
EP  - 289
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2005_6_1_a27/
LA  - ru
ID  - VMP_2005_6_1_a27
ER  - 
%0 Journal Article
%A I. V. Kolos
%A M. V. Kolos
%T Approximate solution of a generalized boundary value problem for hyperbolic-type equations with degeneracy
%J Numerical methods and programming
%D 2005
%P 283-289
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2005_6_1_a27/
%G ru
%F VMP_2005_6_1_a27
I. V. Kolos; M. V. Kolos. Approximate solution of a generalized boundary value problem for hyperbolic-type equations with degeneracy. Numerical methods and programming, Tome 6 (2005) no. 1, pp. 283-289. http://geodesic.mathdoc.fr/item/VMP_2005_6_1_a27/