Numerical peculiarities of the 2D wavelet-homogenization in the problems of multiresolution analysis
Numerical methods and programming, Tome 6 (2005) no. 1, pp. 1-8
Cet article a éte moissonné depuis la source Math-Net.Ru
A numerical algorithm for the 2D wavelet-transformation with the use of the Haar basis and its properties are considered. An approach for improving the efficiency of the numerical scheme is proposed. Some numerical results of wavelet-transformation in the elasticity theory of composite materials are discussed.
Mots-clés :
wavelet-transformation
Keywords: multiscale analysis, Haar basis, finite-element methods, elasticity theory, composite materials.
Keywords: multiscale analysis, Haar basis, finite-element methods, elasticity theory, composite materials.
@article{VMP_2005_6_1_a0,
author = {S. P. Kopysov and Yu. A. Sagdeeva},
title = {Numerical peculiarities of the {2D} wavelet-homogenization in the problems of multiresolution analysis},
journal = {Numerical methods and programming},
pages = {1--8},
year = {2005},
volume = {6},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2005_6_1_a0/}
}
TY - JOUR AU - S. P. Kopysov AU - Yu. A. Sagdeeva TI - Numerical peculiarities of the 2D wavelet-homogenization in the problems of multiresolution analysis JO - Numerical methods and programming PY - 2005 SP - 1 EP - 8 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMP_2005_6_1_a0/ LA - ru ID - VMP_2005_6_1_a0 ER -
S. P. Kopysov; Yu. A. Sagdeeva. Numerical peculiarities of the 2D wavelet-homogenization in the problems of multiresolution analysis. Numerical methods and programming, Tome 6 (2005) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/VMP_2005_6_1_a0/