An adaptive algorithm for continuation of families of symmetric periodic solutions
Numerical methods and programming, Tome 5 (2004) no. 1, pp. 96-106
Voir la notice de l'article provenant de la source Math-Net.Ru
An adaptive high-precision algorithm for continuation of symmetric periodic
solutions to Hamiltonian systems is proposed. This algorithm is based on the
approach offered by B.B. Kreisman to study the structure of families of
symmetric periodic solutions. This algorithm is distinguished by high
precision, economy of computer resources, and possibility of parallelization
and allows one to follow impact orbits, remaining in physical coordinates.
Families of eject periodic solutions of the second kind for the plane Hill
problem with some types of symmetry are analyzed on the basis of the
adaptive algorithm.
Keywords:
Hamiltonian systems, continuation of orbits, Hill problem, numerical integration.
@article{VMP_2004_5_1_a8,
author = {B. B. Kreisman and N. V. Batkhina and A. B. Batkhin},
title = {An adaptive algorithm for continuation of families of symmetric periodic solutions},
journal = {Numerical methods and programming},
pages = {96--106},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {2004},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a8/}
}
TY - JOUR AU - B. B. Kreisman AU - N. V. Batkhina AU - A. B. Batkhin TI - An adaptive algorithm for continuation of families of symmetric periodic solutions JO - Numerical methods and programming PY - 2004 SP - 96 EP - 106 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a8/ LA - ru ID - VMP_2004_5_1_a8 ER -
%0 Journal Article %A B. B. Kreisman %A N. V. Batkhina %A A. B. Batkhin %T An adaptive algorithm for continuation of families of symmetric periodic solutions %J Numerical methods and programming %D 2004 %P 96-106 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a8/ %G ru %F VMP_2004_5_1_a8
B. B. Kreisman; N. V. Batkhina; A. B. Batkhin. An adaptive algorithm for continuation of families of symmetric periodic solutions. Numerical methods and programming, Tome 5 (2004) no. 1, pp. 96-106. http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a8/