Numerical modeling of conjugated point distribution along a geodesic with random curvature
Numerical methods and programming, Tome 5 (2004) no. 1, pp. 291-296.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Jacobi equation along a geodesic with random curvature describes the light propagation in heterogeneous Universe. Conjugate points on a geodesic correspond to the images of gravitational lenses. The Jacobi equation is simulated and statistical distributions of the distances between conjugate points along geodesics are obtained. Some known theoretical estimates and the results we obtained are compared.
Mots-clés : Jacobi equation
Keywords: distribution of conjugate points, geodesic with random curvature, statistical distributions.
@article{VMP_2004_5_1_a26,
     author = {M. E. Artyushkova and D. D. Sokoloff},
     title = {Numerical modeling of conjugated point distribution along a geodesic with random curvature},
     journal = {Numerical methods and programming},
     pages = {291--296},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a26/}
}
TY  - JOUR
AU  - M. E. Artyushkova
AU  - D. D. Sokoloff
TI  - Numerical modeling of conjugated point distribution along a geodesic with random curvature
JO  - Numerical methods and programming
PY  - 2004
SP  - 291
EP  - 296
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a26/
LA  - ru
ID  - VMP_2004_5_1_a26
ER  - 
%0 Journal Article
%A M. E. Artyushkova
%A D. D. Sokoloff
%T Numerical modeling of conjugated point distribution along a geodesic with random curvature
%J Numerical methods and programming
%D 2004
%P 291-296
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a26/
%G ru
%F VMP_2004_5_1_a26
M. E. Artyushkova; D. D. Sokoloff. Numerical modeling of conjugated point distribution along a geodesic with random curvature. Numerical methods and programming, Tome 5 (2004) no. 1, pp. 291-296. http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a26/