Numerical modeling of conjugated point distribution along a geodesic with random curvature
Numerical methods and programming, Tome 5 (2004) no. 1, pp. 291-296
Cet article a éte moissonné depuis la source Math-Net.Ru
The Jacobi equation along a geodesic with random curvature describes the light propagation in heterogeneous Universe. Conjugate points on a geodesic correspond to the images of gravitational lenses. The Jacobi equation is simulated and statistical distributions of the distances between conjugate points along geodesics are obtained. Some known theoretical estimates and the results we obtained are compared.
Mots-clés :
Jacobi equation
Keywords: distribution of conjugate points, geodesic with random curvature, statistical distributions.
Keywords: distribution of conjugate points, geodesic with random curvature, statistical distributions.
@article{VMP_2004_5_1_a26,
author = {M. E. Artyushkova and D. D. Sokoloff},
title = {Numerical modeling of conjugated point distribution along a geodesic with random curvature},
journal = {Numerical methods and programming},
pages = {291--296},
year = {2004},
volume = {5},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a26/}
}
TY - JOUR AU - M. E. Artyushkova AU - D. D. Sokoloff TI - Numerical modeling of conjugated point distribution along a geodesic with random curvature JO - Numerical methods and programming PY - 2004 SP - 291 EP - 296 VL - 5 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a26/ LA - ru ID - VMP_2004_5_1_a26 ER -
M. E. Artyushkova; D. D. Sokoloff. Numerical modeling of conjugated point distribution along a geodesic with random curvature. Numerical methods and programming, Tome 5 (2004) no. 1, pp. 291-296. http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a26/