Shockwave structures in real gases: transition between shock interactions of different types in nonuniqueness solution regions
Numerical methods and programming, Tome 5 (2004) no. 1, pp. 219-228.

Voir la notice de l'article provenant de la source Math-Net.Ru

The physical aspects of nonuniqueness for the shockwave structures arising in super- and hypersonic flows are considered. The thermodynamic conditions specifying the regions of double solution are analyzed. Possible scripts for variation of gas dynamic flow pictures near the boundary of "Mach/regular reflection" transition are investigated.
Keywords: shockwave structures, super- and hypersonic flows, thermodynamic conditions, gasdynamic patterns, boundary transitions.
@article{VMP_2004_5_1_a20,
     author = {G. A. Tarnavskii and A. G. Tarnavskii},
     title = {Shockwave structures in real gases: transition between shock interactions of different types in nonuniqueness solution regions},
     journal = {Numerical methods and programming},
     pages = {219--228},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a20/}
}
TY  - JOUR
AU  - G. A. Tarnavskii
AU  - A. G. Tarnavskii
TI  - Shockwave structures in real gases: transition between shock interactions of different types in nonuniqueness solution regions
JO  - Numerical methods and programming
PY  - 2004
SP  - 219
EP  - 228
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a20/
LA  - ru
ID  - VMP_2004_5_1_a20
ER  - 
%0 Journal Article
%A G. A. Tarnavskii
%A A. G. Tarnavskii
%T Shockwave structures in real gases: transition between shock interactions of different types in nonuniqueness solution regions
%J Numerical methods and programming
%D 2004
%P 219-228
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a20/
%G ru
%F VMP_2004_5_1_a20
G. A. Tarnavskii; A. G. Tarnavskii. Shockwave structures in real gases: transition between shock interactions of different types in nonuniqueness solution regions. Numerical methods and programming, Tome 5 (2004) no. 1, pp. 219-228. http://geodesic.mathdoc.fr/item/VMP_2004_5_1_a20/