The solution of two-dimensional Fredholm integral equations of the first kind with multiprocessor systems
Numerical methods and programming, Tome 4 (2003) no. 1, pp. 323-326.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some aspects of solving two-dimensional nonlinear integral Fredholm equations of the first kind with multiprocessor systems are considered. Tikhonov's regularization is applied to this ill-posed problem on the basis of minimization of Tikhonov's functional by the conjugate gradient method. A number of schemes for parallelization are proposed. The efficiency of our approach is demonstrated.
Keywords: ill-posed problems, Fredholm equation, Tikhonov's functional, conjugate gradient method, parallel computing.
@article{VMP_2003_4_1_a31,
     author = {M. P. Vasil'ev and A. G. Yagola},
     title = {The solution of two-dimensional {Fredholm} integral equations of the first kind with multiprocessor systems},
     journal = {Numerical methods and programming},
     pages = {323--326},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2003_4_1_a31/}
}
TY  - JOUR
AU  - M. P. Vasil'ev
AU  - A. G. Yagola
TI  - The solution of two-dimensional Fredholm integral equations of the first kind with multiprocessor systems
JO  - Numerical methods and programming
PY  - 2003
SP  - 323
EP  - 326
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2003_4_1_a31/
LA  - ru
ID  - VMP_2003_4_1_a31
ER  - 
%0 Journal Article
%A M. P. Vasil'ev
%A A. G. Yagola
%T The solution of two-dimensional Fredholm integral equations of the first kind with multiprocessor systems
%J Numerical methods and programming
%D 2003
%P 323-326
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2003_4_1_a31/
%G ru
%F VMP_2003_4_1_a31
M. P. Vasil'ev; A. G. Yagola. The solution of two-dimensional Fredholm integral equations of the first kind with multiprocessor systems. Numerical methods and programming, Tome 4 (2003) no. 1, pp. 323-326. http://geodesic.mathdoc.fr/item/VMP_2003_4_1_a31/