Gradient-projection method for finding quasisolutions of nonlinear
Numerical methods and programming, Tome 4 (2003) no. 1, pp. 117-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose and study an iterative method for finding quasisolutions of nonlinear ill-posed operator equations on closed convex subsets of a Hilbert space in the presence of errors. The process under consideration combines the gradient-projection method and the projections of iterations obtained onto suitably constructed finite-dimensional subspaces. We establish that the iterations generated by our method are stabilized in a small neighborhood of the quasisolution as the iteration number increases.
Keywords: nonlinear operator, differentiable operator, gradient method, projecting, stability.
Mots-clés : convergence
@article{VMP_2003_4_1_a10,
     author = {A. I. Kozlov},
     title = {Gradient-projection method for finding quasisolutions of nonlinear},
     journal = {Numerical methods and programming},
     pages = {117--125},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2003_4_1_a10/}
}
TY  - JOUR
AU  - A. I. Kozlov
TI  - Gradient-projection method for finding quasisolutions of nonlinear
JO  - Numerical methods and programming
PY  - 2003
SP  - 117
EP  - 125
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2003_4_1_a10/
LA  - ru
ID  - VMP_2003_4_1_a10
ER  - 
%0 Journal Article
%A A. I. Kozlov
%T Gradient-projection method for finding quasisolutions of nonlinear
%J Numerical methods and programming
%D 2003
%P 117-125
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2003_4_1_a10/
%G ru
%F VMP_2003_4_1_a10
A. I. Kozlov. Gradient-projection method for finding quasisolutions of nonlinear. Numerical methods and programming, Tome 4 (2003) no. 1, pp. 117-125. http://geodesic.mathdoc.fr/item/VMP_2003_4_1_a10/