Solvability of the generalized Dirichlet problem for hyperbolic equations
Numerical methods and programming, Tome 3 (2002) no. 1, pp. 161-171
Voir la notice de l'article provenant de la source Math-Net.Ru
A priory inequalities with a negative norm are obtained for hyperbolic
differential equations with Dirichlet boundary conditions for the case when
the right-hand sides belong to a space of generalized functions. The existence
and uniqueness of a generalized solution to the problem as well as the
convergence of an approximate method are proved.
Keywords:
generalized Dirichlet problem, hyperbolic equations, numerical methods, generalized functions.
@article{VMP_2002_3_1_a12,
author = {I. V. Kolos and M. V. Kolos},
title = {Solvability of the generalized {Dirichlet} problem for hyperbolic equations},
journal = {Numerical methods and programming},
pages = {161--171},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMP_2002_3_1_a12/}
}
TY - JOUR AU - I. V. Kolos AU - M. V. Kolos TI - Solvability of the generalized Dirichlet problem for hyperbolic equations JO - Numerical methods and programming PY - 2002 SP - 161 EP - 171 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMP_2002_3_1_a12/ LA - ru ID - VMP_2002_3_1_a12 ER -
I. V. Kolos; M. V. Kolos. Solvability of the generalized Dirichlet problem for hyperbolic equations. Numerical methods and programming, Tome 3 (2002) no. 1, pp. 161-171. http://geodesic.mathdoc.fr/item/VMP_2002_3_1_a12/