Application of a least-squares finite element method to the plane problem of elasticity
Numerical methods and programming, Tome 2 (2001) no. 1, pp. 175-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

An application of a least-squares finite element method to the plane problem of elasticity with two large parameters is considered. An efficient implicit iteration method is proposed for the case of standard triangulation. We also consider a special way of triangulation that allows solving the resulting system of linear algebraic equations by a direct method with the use of fast Fourier transform.
Keywords: projection grid methods, least-squares method, plane elasticity theory, linear systems
Mots-clés : triangulation, fast Fourier transform.
@article{VMP_2001_2_1_a12,
     author = {I. O. Arushanyan and G. M. Kobel'kov},
     title = {Application of a least-squares finite element method to the plane problem of elasticity},
     journal = {Numerical methods and programming},
     pages = {175--183},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMP_2001_2_1_a12/}
}
TY  - JOUR
AU  - I. O. Arushanyan
AU  - G. M. Kobel'kov
TI  - Application of a least-squares finite element method to the plane problem of elasticity
JO  - Numerical methods and programming
PY  - 2001
SP  - 175
EP  - 183
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMP_2001_2_1_a12/
LA  - ru
ID  - VMP_2001_2_1_a12
ER  - 
%0 Journal Article
%A I. O. Arushanyan
%A G. M. Kobel'kov
%T Application of a least-squares finite element method to the plane problem of elasticity
%J Numerical methods and programming
%D 2001
%P 175-183
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMP_2001_2_1_a12/
%G ru
%F VMP_2001_2_1_a12
I. O. Arushanyan; G. M. Kobel'kov. Application of a least-squares finite element method to the plane problem of elasticity. Numerical methods and programming, Tome 2 (2001) no. 1, pp. 175-183. http://geodesic.mathdoc.fr/item/VMP_2001_2_1_a12/