On the problem of quasi-singular optimal controls in hyperbolic type stochastic systems
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 105-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The proposed work examines the optimal control problem of a stochastic system, the dynamics of which are described by a stochastic second-order partial differential equation of hyperbolic type with Goursat boundary conditions. The system is controlled using measurable and constrained controls. The case is considered when two-parameter “white noise” enters the right side of a controlled system of second-order nonlinear hyperbolic equations. The goal of control is to minimize the mathematical expectation of the quality functional at the final point of the domain. Problems of this type arise, for example, when modeling a number of processes of drying, sorption, etc. in the presence of random influences such as standard two-parameter “white noise” on a plane. Using a modified version of the increment method, a formula for the increment of the second-order quality criterion for the quality functional is established, which allows us to obtain the necessary first-order optimality conditions of the type of the linearized Pontryagin maximum principle, as well as to study quasi-singular controls (i. e., the case of degeneration of the first-order optimality condition), in of the stochastic problem under consideration. Necessary conditions for first- and second-order optimality are established. In the end, based on the use of a special variation of control, a pointwise necessary condition for the optimality of quasi-special controls is obtained.
@article{VMJ_2024_26_4_a9,
     author = {K. B. Mansimov and R. O. Mastaliev},
     title = {On the problem of quasi-singular optimal controls in hyperbolic type stochastic systems},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {105--120},
     year = {2024},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a9/}
}
TY  - JOUR
AU  - K. B. Mansimov
AU  - R. O. Mastaliev
TI  - On the problem of quasi-singular optimal controls in hyperbolic type stochastic systems
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 105
EP  - 120
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a9/
LA  - ru
ID  - VMJ_2024_26_4_a9
ER  - 
%0 Journal Article
%A K. B. Mansimov
%A R. O. Mastaliev
%T On the problem of quasi-singular optimal controls in hyperbolic type stochastic systems
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 105-120
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a9/
%G ru
%F VMJ_2024_26_4_a9
K. B. Mansimov; R. O. Mastaliev. On the problem of quasi-singular optimal controls in hyperbolic type stochastic systems. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 105-120. http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a9/

[1] Yegorov, A. I., “Concerning Optimum Control of Processes in Some Systems with Distributed Parameters”, Avtomatika i Telemekhanika, 25:5 (1964), 613–623 (in Russian) | Zbl

[2] Plotnikov, V. I. and Sumin, V. I., “The Optimization of Objects with Distributed Parameters, Described by Goursat–Darboux Systems”, USSR Computational Mathematics and Mathematical Physics, 12:1 (1972), 73–92 | DOI | MR

[3] Srochko, V. A., “Conditions for Optimality for a Class of Distributed Parameter Systems”, Siberian Mathematical Journal, 17:5 (1976), 819–825 | DOI | MR | Zbl

[4] Ashchepkov, L. T., Vasilyyev, O. V and Kovalenok, I. L., “A Strong Optimality Condition for Singular Controls in a Goursat–Darboux System”, Differential Equations, 16:6 (1980), 1054–1059 (in Russian) | MR | Zbl

[5] Novozhenov, M. M., Sumin, V. I. and Sumin, M. I., Methods for Optimal Control of Systems of Mathematical Physics, Gorky State University Publishing House, Gorkiy, 1986

[6] Mansimov, K. B., “Optimality of Quasi-Singular Controls in Goursat–Darboux Systems”, Differential Equations, 22:11 (1986), 1952–1960 (in Russian) | MR

[7] Mansimov, K. B., “Integral Necessary Conditions for the Optimality of Quasi-Singular Controls in Goursat–Darboux Systems”, Automation and Remote Control, 54:5 (1993), 732–739 | MR | Zbl

[8] Mansimov, K. B. and Mardanov M. Dj., Qualitative Theory of Optimal Control of Goursat–Darboux Systems, ELM, Baku, 2010, 360 pp. (in Russian)

[9] Yermolyyev, Yu. M., Gulenko, V. P. and Tsarenko, T. I., Finite-Difference Method in Optimal Control Problems, Naukova Dumka, Kiyev, 1978, 164 pp. (in Russian) | MR

[10] Shaikhet, L. E., “Optimal Control of a Class of Stochastic Partial Differential Equations”, Mathematical Notes of the Academy of Sciences of the USSR, 31:6 (1982), 471–472 | DOI | MR | Zbl

[11] Shaikhet, L. E., “Optimal Control of Certian Hyperbolic and Integral Equations”, Teoriya sluchaynykh protsessov, 15, Kiyev, 1987, 110–116 (in Russian) | Zbl

[12] Mastaliyev R. O., “Optimality conditions in one stochastic control problem”, ICOMAA (Dergipark), Conference Proceedings of Science and Technology, 3, no. 1, 2020, 180–183

[13] Mastaliev, R. O., “First Order Necessary Optimal Conditions in Gursat–Darboux Stochastic Systems”, Far Eastern Mathematical Journal, 21:1 (2021), 89–104 (in Russian) | DOI | MR | Zbl

[14] Mansimov, K. B. and Mastaliev, R. O., “Necessary Optimality Conditions for Singular Controls in Stochastic Goursat–Darboux Systems”, Automation and Remote Control, 83:4 (2022), 536–547 | DOI | DOI | MR | Zbl

[15] Qi Lu, Xu Zhang, “Control theory for stochastic distributed parameters systems an engineering perspective”, Annual Reviews in Control, 51:6 (2021), 268–330 | DOI | MR

[16] Qi Lu, Xu Zhang, Mathematical Control Theory for Stochastic Partial Differential Equations, Springer, 2021 | MR | Zbl

[17] Mansimov K. B., Mastaliyev R. O., “First order new necessary optimality conditions in stochastic Goursat–Darboux systems”, The 8th International COIA (24–26 August, 2022), Baku, 2022, 324–326 | MR

[18] Ponomarenko, L. L., “Stochastic Infinite-Dimensional Goursat Problem”, Matematicheskiy analiz i teoriya veroyatnostey, Kiyev, 1978, 140–143 (in Russian) | Zbl

[19] Gabasov, R. and Kirillova, F. M., Singular Optimal Controls, URSS, M., 2011, 256 pp. (in Russian)

[20] Gasanov, K. K., “The Existence of Optimal Controls for Processes Described by a System of Hyperbolic Equations”, USSR Computational Mathematics and Mathematical Physics, 13:3 (1973), 78–90 | DOI | MR | Zbl

[21] Mansimov, K. B. and Mastaliev, R. O., “Representation of the Solution of Goursat Problem for Second Order Linear Stochastic Hyperbolic Differential Equations”, The Bulletin of Irkutsk State University, Series Mathematics, 36 (2021), 29–43 (in Russian) | DOI | Zbl