@article{VMJ_2024_26_4_a7,
author = {A. R. Kasaeva and A. F. Tedeev},
title = {The support behavior of the solution to the {Cauchy} problem for higher order weighted parabolic equations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {87--94},
year = {2024},
volume = {26},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a7/}
}
TY - JOUR AU - A. R. Kasaeva AU - A. F. Tedeev TI - The support behavior of the solution to the Cauchy problem for higher order weighted parabolic equations JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 87 EP - 94 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a7/ LA - en ID - VMJ_2024_26_4_a7 ER -
%0 Journal Article %A A. R. Kasaeva %A A. F. Tedeev %T The support behavior of the solution to the Cauchy problem for higher order weighted parabolic equations %J Vladikavkazskij matematičeskij žurnal %D 2024 %P 87-94 %V 26 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a7/ %G en %F VMJ_2024_26_4_a7
A. R. Kasaeva; A. F. Tedeev. The support behavior of the solution to the Cauchy problem for higher order weighted parabolic equations. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 87-94. http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a7/
[1] Ohya, H., Structure of Solutions for Some Nonlinear Elliptic Problems in Unbounded Domains, Thesis, 2005
[2] Ohya, H., “Existence Results for Some Quasilinear Elliptic Equations Involving Critical Sobolev Exponents”, Advances in Differential Equations, 9:11–12 (2004), 1339–1368 | DOI | MR | Zbl
[3] Bernis, F., “Existence Results for Doubly Nonlinear Higher Order Parabolic Equations on Unbounded Domains”, Mathematische Annalen, 279 (1988), 373–394 | DOI | MR | Zbl
[4] Andreucci, D. and Tedeev, A. F., The Cauchy Problem for Doubly Degenerate Parabolic Equations with Weights, 25 pp., arXiv: 2410.23075
[5] Antontsev, S. N., D{\i}az, J. I. and Shmarev, S. I., Energy Methods for Free Boundary Problems: Applications to Non-Linear Pdes and Fluid Mechanics, Progress in Nonlinear Differential Equations and Their Applications, 48, Birkhauser, Boston, 2002 | MR
[6] Antoncev, S. N., “On the Localization of Solutions of Nonlinear Degenerate Elliptic and Parabolic Equations”, Soviet Mathematics. Doklady, 24 (1981), 420–424 | MR | Zbl
[7] Diaz, J. I. and Veron, L., “Local Vanishing Properties of Solutions of Elliptic and Parabolic Quasilinear Equations”, Transactions of the American Mathematical Society, 290:2 (1985), 787–814 | DOI | MR | Zbl
[8] Bernis, F., “Finite Speed of Propagation and Asymptotic Rates for Some Nonlinear Higher Order Parabolic Equations with Absorption”, Proceedings of the Royal Society of Edinburgh, Section A: Mathematics, 104:1–2 (1986), 1–19 | DOI | MR | Zbl
[9] Bernis, F., “Qualitative Properties for Some Nonlinear Higher Order Degenerate Parabolic Equations”, Houston Journal of Mathematics, 14:3 (1988), 319–352 | MR | Zbl
[10] Shishkov, A. E., “Evolution of the Support of a Solution with Unbounded Energy of Quasi-Linear Degenerate Parabolic Equation of Arbitrary Order”, Sbornik: Mathematics, 186:12 (1995), 1843–1864 | DOI | MR | Zbl
[11] Shishkov, A. E., “Dynamics of the Geometry of the Support of the Generalized Solution of a Higher-Order Quasilinear Parabolic Equation in Divergence Form”, Differential Equations, 29:3 (1993), 460–469 | MR | Zbl
[12] Andreucci, D. and Tedeev, A. F., “Sharp Estimates and Finite Speed of Propagation for Neumann Problem in Domains Narrowing at Infinity”, Advances in Differential Equations, 5:7–9 (2000), 833–860 | DOI | MR | Zbl
[13] Andreucci, D. and Tedeev, A. F., “A Fujita Type Result for a Degenerate Neumann Problem in Domains with Noncompact Boundary”, Journal of Mathematical Analysis and Applications, 231:2 (1999), 543–567 | DOI | MR | Zbl
[14] Andreucci, D. and Tedeev, A. F., “Finite Speed of Propagation for the Thin-Film Equation and Other Higher-Order Parabolic Equations with General Nonlinearity”, Interfaces Free Bound, 3:3 (2001), 233–264 | DOI | MR | Zbl
[15] Andreucci, D. and Tedeev, A. F., “Universal Bounds at the Blow-Up Time for Nonlinear Parabolic Equations”, Advances in Differential Equations, 10:1 (2005), 89–120 | DOI | MR | Zbl
[16] Ladyzhenskaja, O., Solonnikov, V. A. and Uralceva, N. V., Linear and Quasi-Linear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society, Providence, RI, 1968 | DOI | MR