@article{VMJ_2024_26_4_a6,
author = {M. B. Karmanova},
title = {Area of images of measurable sets on depth 2 {Carnot} manifolds with {sub-Lorentzian} structure},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {78--86},
year = {2024},
volume = {26},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a6/}
}
TY - JOUR AU - M. B. Karmanova TI - Area of images of measurable sets on depth 2 Carnot manifolds with sub-Lorentzian structure JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 78 EP - 86 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a6/ LA - en ID - VMJ_2024_26_4_a6 ER -
M. B. Karmanova. Area of images of measurable sets on depth 2 Carnot manifolds with sub-Lorentzian structure. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 78-86. http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a6/
[1] Karmanova, M. B., “Metric Characteristics of Classes of Compact Sets on Carnot Groups with Sub-Lorentzian Structure”, Vladikavkaz Mathematical Journal, 26:3 (2024), 47–55 | DOI
[2] Miklyukov, V. M., Klyachin, A. A. and Klyachin, V. A., Maximal Surfaces in Minkowski Space-Time, VolSU, Volgograd, 2011, 530 pp. (in Russian)
[3] Krym, V. R. and Petrov, N. N., “Equations of Motion of a Charged Particle in a Five-Dimensional Model of the General Theory of Relativity with a Nonholonomic Four-Dimensional Velocity Space”, Vestnik St. Petersburg University: Mathematics, 40:1 (2007), 52–60 | DOI | MR | Zbl
[4] Krym, V. R. and Petrov, N. N., “The Curvature Tensor and the Einstein Equations for a Four-Dimensional Nonholonomic Distribution”, Vestnik St. Petersburg University: Mathematics, 41:3 (2008), 256–265 | DOI | MR | Zbl
[5] Berestovskii, V. N. and Gichev, V. M., “Metrized Left-Invariant Orders on Topological Groups”, St. Petersburg Mathematical Journal, 11:4 (2000), 543–565 | MR
[6] Karmanova, M. B., “Lipschitz Images of Open Sets on Sub-Lorentzian Structures”, Siberian Advances in Mathematics, 34:1 (2024), 67–79 | DOI | MR
[7] Basalaev, S. G. and Vodopyanov, S. K., “Approximate Differentiability of Mappings of Carnot–Carathéodory Spaces”, Eurasian Mathematical Journal, 4:2 (2013), 10–48 | MR | Zbl
[8] Gromov, M., “Carnot–Carathéodory Spaces Seen from Within”, Sub-Riemannian Geometry, Birkhäuser Verlag, Basel, 1996, 79–318 | DOI | MR
[9] Karmanova, M. and Vodopyanov, S., “Geometry of Carnot–Carathéodory Spaces, Differentiability, Coarea and Area Formulas”, Analysis and Mathematical Physics, Birkhäuser, Basel, 2009, 233–335 | DOI | MR | Zbl
[10] Nagel, A., Stein, E. M. and Wainger, S., “Balls and Metrics Defined by Vector Fields I: Basic Properties”, Acta Mathematica, 155 (1985), 103–147 | DOI | MR | Zbl
[11] Postnikov, M. M., Lectures in Geometry. Semester V: Lie Groups and Lie Algebras, Mir, M., 1986, 446 pp. | MR
[12] Bonfiglioli, A., Lanconelli, E. and Uguzzoni, F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer Monographs in Mathematics, Springer, Berlin, 2007, 828 pp. | DOI | MR | Zbl
[13] Karmanova, M. B., “Fine Properties of Basis Vector Fields on Carnot-Carathéodory Spaces under Minimal Assumptions on Smoothness”, Siberian Mathematical Journal, 55:1 (2014), 87–99 | DOI | MR | Zbl
[14] Folland, G. B. and Stein, E. M., Hardy Spaces on Homogeneous Group, Princeton University Press, Princeton, 1982, 286 pp. | MR
[15] Vodopyanov, S. K. and Ukhlov, A. D., “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. I”, Siberian Advances in Mathematics, 14:4 (2004), 78–125 | MR | Zbl
[16] Vodopyanov, S. K. and Ukhlov, A. D., “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. II”, Siberian Advances in Mathematics, 15:1 (2005), 91–125 | MR | Zbl
[17] Vodopyanov, S., “Geometry of Carnot–Carathéodory Spaces and Differentiability of Mappings”, The Interaction of Analysis and Geometry, Contemporary Mathematics, 424, AMS, Providence, RI, 2007, 247–301 | DOI | MR | Zbl