@article{VMJ_2024_26_4_a4,
author = {A. A. Boltayev and D. K. Durdiev and A. A. Rahmonov},
title = {Kernel determination problem in the third order {1D} {Moore{\textendash}Gibson{\textendash}Thompson} equation with memory},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {55--65},
year = {2024},
volume = {26},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a4/}
}
TY - JOUR AU - A. A. Boltayev AU - D. K. Durdiev AU - A. A. Rahmonov TI - Kernel determination problem in the third order 1D Moore–Gibson–Thompson equation with memory JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 55 EP - 65 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a4/ LA - en ID - VMJ_2024_26_4_a4 ER -
%0 Journal Article %A A. A. Boltayev %A D. K. Durdiev %A A. A. Rahmonov %T Kernel determination problem in the third order 1D Moore–Gibson–Thompson equation with memory %J Vladikavkazskij matematičeskij žurnal %D 2024 %P 55-65 %V 26 %N 4 %U http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a4/ %G en %F VMJ_2024_26_4_a4
A. A. Boltayev; D. K. Durdiev; A. A. Rahmonov. Kernel determination problem in the third order 1D Moore–Gibson–Thompson equation with memory. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 55-65. http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a4/
[1] Thompson, P. A., Compressible-Fluid Dynamics, McGraw-Hill, USA, 1972 | Zbl
[2] Green, A. E. and Naghdi, P. M., “On Undamped Heat Waves in an Elastic Solid”, Journal of Thermal Stresses, 15:2 (1992), 253–264 | DOI | MR
[3] Green, A. E. and Naghdi, P. M., “Thermoelasticity without Energy Dissipation”, Journal of Elasticity, 31 (1993), 189–208 | DOI | MR | Zbl
[4] Green, A. E. and Naghdi, P. M., “A Unified Procedure for Construction of Theories of Deformable Media. I. Classical Continuum Physics”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 448:1934 (1995) | DOI | MR | Zbl
[5] Romanov, V. G., Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, The Netherlands, 1987 | MR
[6] Kabanikhin, S. I., Inverse and Ill-posed Problems: Theory and Applications, Theory and Applications, Inverse and Ill-Posed Problems Series, 55, De Gruyter Academic Publishing, Berlin, 2011 | DOI | MR
[7] Lesnic, D., Inverse Problems with Applications in Science and Engineering, Leeds University, United Kingdom; Chapman Hall, 2022 | MR
[8] Isakov, V., Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, 127, Springer, New York, 2006 | MR | Zbl
[9] Hasanov, A. H. and Romanov, V. G., Introduction to Inverse Problems for Differential Equations, Springer International Publishing, Switzerland, 2017 | MR | Zbl
[10] Colombo, F. and Guidetti, D., “Identification of the Memory Kernel in the Strongly Damped Wave Equation by a Flux Condition”, Communications on Pure and Applied Analysis, 8:2 (2009), 601–620 | DOI | MR | Zbl
[11] Lorenzi, A. and Rossa, E., “Identification of Two Memory Kernels in a Fully Hyperbolic Phase-Field System”, Journal of Inverse and Ill-posed Problems, 16:2 (2008), 147–174 | DOI | MR | Zbl
[12] Lorenzi, A. and Messina, F., “An Identification Problem with Evolution on the Boundary of Parabolic Type”, Advances in Differential Equations, 13:11–12 (2008), 1075–1108 | DOI | MR | Zbl
[13] Durdiev, D. K., “Global Solvability of an Inverse Problem for an Integro-Differential Equation of Electrodynamics”, Differential Equations, 44:7 (2008), 893–899 | DOI | MR | Zbl
[14] Durdiev, D. K. and Totieva, Z. D., “The Problem of Determining the one-Dimensional Matrix Kernel of the System of Viscoelasticity Equations”, Mathematical Methods in the Applied Sciences, 41:17 (2018), 8019–8032 | DOI | MR | Zbl
[15] Durdiev, D. K. and Totieva, Z. D., Kernel Determination Problems in Hyperbolic Integro-Differential Equations, Infosys Science Foundation Series, Springer, 2023 | DOI | MR | Zbl
[16] Durdiev, D. K. and Zhumaev, Zh. Zh., “Memory Kernel Reconstruction Problems in the Integro-Differential Equation of Rigid Heat Conductor”, Mathematical Methods in the Applied Sciences, 45:14 (2022), 8374–8388 | DOI | MR | Zbl
[17] Colombo, F., “An Inverse Problem for a Parabolic Integrodifferential Model in the Theory of Combustion”, Physica D: Nonlinear Phenomena, 236:2 (2007), 81–89 | DOI | MR | Zbl
[18] Colombo, F., Guidetti, D. and Lorenzi A., “Integro-Differential Identification Problems for Thermal Materials with Memory in Non-Smooth Plane Domains”, Dynamic Systems and Applications, 12 (2003), 533–559 | MR | Zbl
[19] Janno, J. and Lorenzi, A., “Recovering Memory Kernels in Parabolic Transmission Problems”, Journal of Inverse and Ill-posed Problems, 16:3 (2011), 239–265 | DOI | MR
[20] Durdiev, D. K. and Rakhmonov, A. A., “Inverse Problem for the System Integro-Differential Equation SH Waves in a Visco-Elastic Porous Medium: Global Solvability”, Theoretical and Mathematical Physics, 195:3 (2018), 923–937 | DOI | MR | Zbl
[21] Lasiecka, I. and Wang, X., “Moore–Gibson–Thompson Equation with Memory, Part I: Exponential Decay of Energy”, Zeitschrift für angewandte Mathematik und Physik, 67 (2016), 17 | DOI | MR | Zbl
[22] Kaltenbacher, B., Lasiecka, I. and Marchan, R., “Wellposedness and Exponential Decay Rates for the Moore–Gibson–Thompson Equation Arising in High Intensity Ultrasound”, Control and Cybernetics, 40:4 (2011), 971–988 | MR | Zbl
[23] Liu S., and Triggiani R., “An Inverse Problem for a Third Order PDE Arising in High-Intensity Ultrasound: Global Uniqueness and Stability by One Boundary Measurement”, Journal of Inverse and Ill-Posed Problems, 21:6 (2013), 825–869 | DOI | MR | Zbl
[24] Boumenir, A., “The Reconstruction of an Equation of Visco-Elasticity”, Nonautonomous Dynamical Systems, 5:1 (2018), 152–154 | DOI | MR | Zbl
[25] Al-Khulai, W. and Boumenir, A., “Reconstructing The Moore–Gibson–Thompson Equation”, Nonautonomous Dynamical Systems, 7:1 (2020), 219–223 | DOI | MR | Zbl
[26] Lorenzi, A., “Identification Problems for Integrodifferential Equations”, Ill-Posed Problems in Natural Sciences, ed. A. Tikhonov, TVP Sci. Publ., Moscow, 1992, 342–366 | DOI | MR
[27] Bukhgeim, A. L., “Inverse Problems of Memory Reconstruction”, Journal of Inverse and Ill-posed Problems, 1:3 (1993), 193–205 | DOI | MR | Zbl
[28] Kolmogorov, A. N. and Fomin, S. V., Elements of Function Theory and Functional Analysis, Dover Publications, USA, 1999 | MR