Unbounded Banach–Saks operators and unbounded Grothendieck operators on Banach lattices
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 137-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently, there has been much attention to the ordered structures beyond Banach lattices. Moreover, we have many nice properties in Banach spaces that can be transformed naturally into Banach lattice cases. Therefore, combining these notions with order structure can produce nicer notions, as well. Suppose $E$ is a Banach lattice. Recently, there have been some motivating contexts regarding the known Banach–Saks property and the Grothendieck property from an order point of view. In this paper, we establish these results for operators that enjoy different types considered for the Banach-Saks property. We characterize order continuity and reflexivity of the underlying Banach lattices in terms of the corresponding operator versions related to the Banach–Saks properties. Moreover, we consider different notions related to the Grothendieck property from an ordered attitude; then, we investigate operator versions of these concepts, as well. In particular, beside other results, we characterize order continuity and reflexivity of the underlying Banach lattices in terms of the corresponding bounded linear operators defined on the corresponding Banach lattices, as well.
@article{VMJ_2024_26_4_a11,
     author = {R. Sabbagh and O. Zabeti},
     title = {Unbounded {Banach{\textendash}Saks} operators and unbounded {Grothendieck} operators on {Banach} lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {137--143},
     year = {2024},
     volume = {26},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a11/}
}
TY  - JOUR
AU  - R. Sabbagh
AU  - O. Zabeti
TI  - Unbounded Banach–Saks operators and unbounded Grothendieck operators on Banach lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 137
EP  - 143
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a11/
LA  - en
ID  - VMJ_2024_26_4_a11
ER  - 
%0 Journal Article
%A R. Sabbagh
%A O. Zabeti
%T Unbounded Banach–Saks operators and unbounded Grothendieck operators on Banach lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 137-143
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a11/
%G en
%F VMJ_2024_26_4_a11
R. Sabbagh; O. Zabeti. Unbounded Banach–Saks operators and unbounded Grothendieck operators on Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 137-143. http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a11/

[1] Deng Y., O'Brien M. and Troitsky, V. G., “Unbounded Norm Convergence in Banach Lattices”, Positivity, 21:3 (2017), 963–974 | DOI | MR | Zbl

[2] Erkursun-Ozcan, N., Gezer, N. A. and Zabeti, O., “Unbounded Absolutely Weak Dunford–Pettis Operators”, Turkish Journal of Mathematics, 43:6 (2019), 2731–2740 | DOI | MR | Zbl

[3] Machrafi, N., El Fahri, K., Moussa, M. and Altin, B., “A Note on Weak Almost Limited Operators”, Hacettepe Journal of Mathematics and Statistics, 48:3 (2019), 759–770 | MR | Zbl

[4] Zabeti, O., “The Grothendieck Property from an Ordered Point of View”, Positivity, 26 (2022), 17 | DOI | MR | Zbl

[5] Zabeti, O., “Unbounded Continuous Operators and Unbounded Banach–Saks Property in Banach Lattices”, Positivity, 25:1 (2021), 1989–2001 | DOI | MR | Zbl

[6] Aliprantis, C. D. and Burkinshaw, O., Positive operators, Springer, 2006 | Zbl

[7] Nieberg, P., Banach Lattices, Springer-Verlag, Berlin, 1991 | MR | Zbl

[8] Gao, N., Troitsky, V. G. and Xanthos, F., “Uo-convergence and Its Applications to Cesàro Means in Banach Lattices”, Israel Journal of Mathematics, 220 (2017), 649–689 | DOI | MR | Zbl

[9] Zabeti, O., “Unbounded Absolute Weak Convergence in Banach Lattices”, Positivity, 22:1 (2018), 501–505 | DOI | MR | Zbl

[10] Dodds, P. G. and Fremlin, D. H., “Compact Operators in Banach Lattices”, Israel Journal of Mathematics, 34:4 (1979), 287–320 | DOI | MR | Zbl

[11] Domanski, P., Lindström, M. and Schlüchtermann, G., “Grothendieck Operators on Tensor Products”, Proceedings of the American Mathematical Society, 125:8 (1997), 2285–2291 | DOI | MR | Zbl