@article{VMJ_2024_26_4_a1,
author = {D. S. Anikonov and D. S. Konovalova},
title = {Inversion of {Radon} transformation for discontinuous functions in unbounded sets},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {21--27},
year = {2024},
volume = {26},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a1/}
}
TY - JOUR AU - D. S. Anikonov AU - D. S. Konovalova TI - Inversion of Radon transformation for discontinuous functions in unbounded sets JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 21 EP - 27 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a1/ LA - ru ID - VMJ_2024_26_4_a1 ER -
D. S. Anikonov; D. S. Konovalova. Inversion of Radon transformation for discontinuous functions in unbounded sets. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 21-27. http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a1/
[1] John, F., Plane Waves and Spherical Means Applied to Partial Differential Equations, Dover Publications, 1955 | MR
[2] Markoe A., Analytic Tomography in Encyclopedia of Mathematics and its Applications, Cambridge Univ. Press, Cambridge, 2006, 315 pp. | MR
[3] Natterer, F., The Mathematics of Computerized Tomography, Wiley, 1986, 232 pp. | MR | MR | Zbl
[4] Anikonov, D. S., Kovtanyuk, A. E. and Prokhorov, I. V., Using Transport Equations in Tomography, Logos, M., 2000, 224 pp. (in Russian)
[5] Anikonov, D. S., Balakina, E. Yu. and Konovalova, D. S., “An Inverse Problem for Generalized Radon Transformation”, St. Petersburg Polytechnical State University Journal: Physics and Mathematics, 15:1 (2022), 41–51 | DOI | DOI | MR
[6] Anikonov, D. S. and Konovalova, D. S., “A Problem of Integral Geometry for a Family of Curves with Incomplete Data”, Doklady Mathematics, 92:2 (2015), 221–224 | DOI | DOI | MR | Zbl
[7] Kalnin, T. G., Ivonin, D. A., Abrosimov, K. N., Grachev, E. A. and Sorokina, N. V., “Analysis of Tomographic Images of the Soil Pore Space Structure by Integral Geometry Methods”, Eurasian Soil Science, 54:9 (2021), 1400–1409 | DOI | DOI
[8] Temirgaliev, N., Abikenova, Sh. K., Azhgaliev, Sh. U. and Taugynbaeva, G. E., “The Radon Transform in the Scheme of $C(N)D$-Investigations and the Quasi-Monte Carlo Theory”, Russian Mathematics, 64:3 (2020), 87–92 | DOI | DOI | MR | Zbl
[9] Baev, A. V., “Radon Transform for Solving an Inverse Scattering Problem in a Planar Layered Acoustic Medium”, Computational Mathematics and Mathematical Physics, 58:4 (2018), 537–547 | DOI | DOI | MR | Zbl
[10] Simonov, E. N., Prokhorov, A. V. and Akintseva, A. V., “Mathematical Modelling of Reconstruction of Volumetric Images in X-Ray Computed Tomography Using Holographic Methods”, Bulletin of the South Ural State University. Series Mathematical Modeling, Programming and Computer Software, 12:3 (2019), 102–114 (in Russian) | DOI | Zbl
[11] Derevtsov E. Yu., Volkov Yu. S., Schuster T., “Differential equations and uniqueness theorems for the generalized attenuated ray transforms of tensor fields”, Numerical Computations: Theory and Algorithms, v. II, Lect. Notes Comp. Sci., 11974, eds. Ya. D. Sergeyev, D. E. Kvasov, 2020, 97–111 | DOI | MR | Zbl