On divisors in some weighted algebras of entire functions
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 5-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider three weighted algebras of entire functions of one variable.They are Bernstein algebra, Schwartz algebra and Beurling-Björck algebra. The Bernstein algebra is formed by entire functions of exponential type that are bounded on the real line. The Schwartz algebra consists of all entire functions of exponential type whose growth along the real axis does not exceed the polynomial one. And the Beurling-Björck algebra is defined as an algebra of entire functions of exponential type whose growth along the real axis is bounded by special weight function. We prove the criterion for divisors of the Bernsteing algebra in term of so-called «slow decrease». Similar criteria for the Scwartz algebra and the Beurling-Björck algebra are well-known. We also explore relations between the set of divisors of the Bernstein algebra and sine-type functions. In the second part of the work, conditions are given for the shift of an integer sequence under which the perturbed sequence is the zero set of the divisor of each of the algebras under consideration. The corresponding criterion for the Berling-Bjork algebra is obtained. It is emphasized that, in general, the conditions defining admissible shifts have the same form of dependence on the weight function in all three algebras.
@article{VMJ_2024_26_4_a0,
     author = {N. F. Abuzyarova and D. V. Semenova},
     title = {On divisors in some weighted algebras of entire functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--20},
     year = {2024},
     volume = {26},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a0/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
AU  - D. V. Semenova
TI  - On divisors in some weighted algebras of entire functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 5
EP  - 20
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a0/
LA  - ru
ID  - VMJ_2024_26_4_a0
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%A D. V. Semenova
%T On divisors in some weighted algebras of entire functions
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 5-20
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a0/
%G ru
%F VMJ_2024_26_4_a0
N. F. Abuzyarova; D. V. Semenova. On divisors in some weighted algebras of entire functions. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 4, pp. 5-20. http://geodesic.mathdoc.fr/item/VMJ_2024_26_4_a0/

[1] Akhiezer, N. I., Lectures on Approximation Theory, Nauka, M., 1965, 408 pp. (in Russian)

[2] Meise R., Taylor B. A., Vogt D., “Equivalence of slowly decreasing conditions and local fourier expansions”, Indiana Univ. Math. J., 36:4 (1987), 729–756 | DOI | MR | Zbl

[3] Ehrenpreis L., “Solution of some problems of division, IV”, Amer. J. Math., 57:1 (1960), 522–588 | DOI | MR

[4] Abanin, A. V. and Abanina, D. A., “Division Theorem in Some Weighted Spaces of Entire Functions”, Vladikavkaz Mathematical Journal, 12:3 (2010), 3–20 (in Russian) | MR | Zbl

[5] Abanina, D. A., “Solvability of Convolution Equations in the Beurling Spaces of Ultradifferentiable Functions of Mean Type on an Interval”, Siberian Mathematical Journal, 53 (2012), 377–392 | DOI | MR | Zbl

[6] Abuzyarova, N. F., “On Shifts of the Sequence of Integers Generating Functions that are Invertible in the Sense of Ehrenpreis”, Journal of Mathematical Sciences, 251:2 (2020), 161–175 | DOI | MR | Zbl

[7] Abuzyarova, N. F., “Preservation of Classes of Entire Functions Defined in Terms of Growth Restrictions Along the Real Axis Under Perturbations of Their Zero Sets”, St. Petersburg Mathematical Journal, 33 (2022), 585–606 | DOI | MR | MR | Zbl

[8] Abuzyarova, N. F., “Perturbations of an Integer Sequence as Zero Sets of Divisors in Some Spaces of Entire Functions”, Mathematical Notes, 113 (2023), 613–623 | DOI | DOI | MR | MR | Zbl

[9] Levin, B. Y. and Ostrovskii, I. V., “Zeros of Sine-Type Functions”, Journal of Soviet Mathematics, 26 (1984), 2287–2288 | DOI | MR

[10] Sedletskii, A. M., “Analytic Fourier Transforms and Exponential Approximations. I”, Journal of Mathematical Sciences, 129 (2005), 4251–4408 | DOI | MR

[11] Sedletskii A. M., “On zeros of Laplace transform of finite measure”, Int. Trans. and Spec. Func., 1 (1993), 51–59 | DOI | MR | Zbl

[12] Paley R. C., Wiener N., Fourier Transforms in the Complex Domain, Amer. Math. Soc., N. Y., 1934, 268 pp. | MR | Zbl

[13] Levin, B. Ya., Distribution of Zero of Entire Functions, American Mathematical Society Publication, Providence, Rhode Island, 1972 | MR

[14] Kheifits, A. I., “A Characterization of the Zeros of Certain Special Classes of Entire Functions of Finite Degree”, Theory of Functions, Functional Analysis and Applications, 9 (1969), 3–13 (in Russian) | Zbl

[15] Sedletskii, A. M., “Asymptotics of the Zeros of Degenerate Hypergeometric Functions”, Mathematical Notes, 82 (2007), 229–237 | DOI | DOI | MR | Zbl

[16] Yukhimenko, A. A., “On a Class of Sine-Type Functions”, Mathematical Notes, 83 (2008), 858–870 | DOI | DOI | MR | Zbl

[17] Abanin, A. V., Ultradifferentiable Functions and Ultradistributions, Nauka, M., 2007, 222 pp. (in Russian)

[18] Krasnosel'skii, M. A. and Rutitskii, Y. B., Convex Functions and Orlich Spaces, GIFML, M., 1958, 271 pp. (in Russian) | MR

[19] Favorov, S. Yu., “Zero Sets of Entire Functions of Exponential Type with Additional Conditions on the Real Axis”, St. Petersburg Mathematical Journal, 20:1 (2009), 95–100 | DOI | MR | Zbl