@article{VMJ_2024_26_3_a7,
author = {A. A. Rakhmonov},
title = {Determination of a coefficient and kernel in a $d$-dimensional fractional integro-differential equation},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {86--111},
year = {2024},
volume = {26},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a7/}
}
TY - JOUR AU - A. A. Rakhmonov TI - Determination of a coefficient and kernel in a $d$-dimensional fractional integro-differential equation JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 86 EP - 111 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a7/ LA - en ID - VMJ_2024_26_3_a7 ER -
A. A. Rakhmonov. Determination of a coefficient and kernel in a $d$-dimensional fractional integro-differential equation. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 86-111. http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a7/
[1] Babenko, Y. I., Heat and Mass Transfer, Chemia, L., 1986
[2] Caputo, M. and Mainardi, F., “Linear Models of Dissipation in Anelastic Solids”, La Rivista del Nuovo Cimento, 1:2 (1971), 161–198 | DOI
[3] Gorenflo, R., Mainardi, F., “Fractional Calculus: Integral and Differential Equations of Fractional Order”, Fractals Fractional Calculus in Continuum Mechanics, eds. A. Carpinteri, F. Mainar, Springer, New York, 1997, 223–276
[4] Gorenflo, R. and Rutman, R., “On Ultraslow and Intermediate Processes”, Transform Methods and Special Functions, eds. P. Rusev, I. Dimovski, V. Kiryakova, Science Culture Technology Publishing, Singapore, 1995, 61–81
[5] Jin, B. and Rundell, W., “A Tutorial on Inverse Problems for Anomalous Diffusion Processes”, Inverse Problems, 31:3 (2015), 035003 | DOI
[6] Mainardi, F., “Fractional calculus: Some Basic Problems in Continuum and Statistical Mechanics”, Fractals and Fractional Calculus in Continuum Mechanics, eds. A. Carpinteri, F. Mainardi, Springer, New York, 1997, 291–348
[7] Beshtokov, M. Kh. and Erzhibova, F. A., “On Boundary Value Problems for Fractional-Order Differential Equations”, Siberian Advances in Mathematics, 31:4 (2021), 229–243 | DOI
[8] Klaseboer, E., Sun, Q. and Chan, D. Y., “Non-Singular Boundary Integral Methods for Fluid Mechanics Applications”, Journal of Fluid Mechanics, 696 (2012), 468–478 | DOI
[9] Ata, K. and Sahin, M., “An Integral Equation Approach for the Solution of the Stokes Flow with Hermite Surfaces”, Engineering Analysis with Boundary Elements, 96 (2018), 14–22 | DOI
[10] Kuzmina, K. and Marchevsky, I., “The Boundary Integral Equation Solution in Vortex Methods with the Airfoil Surface Line Discretization into Curvilinear Panels”, Topical Problems of Fluid Mechanics 2019, 2019, 131–138 | DOI
[11] Lienert, M. and Tumulka, R., “A New Class of Volterra-Type Integral Equations from Relativistic Quantum Physics”, Journal of Integral Equations and Applications, 31:4 (2019), 535–569 | DOI
[12] Sidorov, D., Integral Dynamical Models: Singularities, Signals, and Control, World Scientific, Singapore, 2014
[13] Abdou, M. A. and Basseem, M., “Thermopotential Function in Position and Time for a Plate Weakened by Curvilinear Hole”, Archive of Applied Mechanics, 92:3 (2022), 867–883 | DOI
[14] Matoog, R. T., “Treatments of Probability Potential Function for Nuclear Integral Equation”, Journal of Physical Mathematics, 8:2 (2017), 2090–0902 | DOI
[15] Gao, J., Condon, M. and Iserles, A., “Spectral Computation of Highly Oscillatory Integral Equations in Laser Theory”, Journal of Computational Physics, 395 (2019), 351–381 | DOI
[16] Durdiev, D. K., Rahmonov A. A. and Bozorov Z. R., “A Two-Dimensional Diffusion Coefficient Determination Problem for the Time-Fractional Equation”, Mathematical Methods in the Applied Sciences, 44 (2021), 10753–10761 | DOI
[17] Subhonova Z. A. and Rahmonov, A. A., “Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation”, Lobachevskii Journal of Mathematics, 42:15 (2021), 3747–3760 | DOI
[18] Kochubei, A. N., “A Cauchy Problem for Evolution Equations of Fractional Order”, Differential Equations, 25 (1989), 967–974
[19] Kochubei, A. N., “Fractional-Order Diffusion”, Differential Equations, 26 (1990), 485–492
[20] Eidelman, S. D. and Kochubei, A. N., “Cauchy Problem for Fractional Diffusion Equations”, Journal of Differential Equations, 199:2 (2004), 211–255 | DOI
[21] Durdiev, D. K. and Rahmonov, A. A., “A Multidimensional Diffusion Coefficient Determination Problem for the Time-Fractional Equation”, Turkish Journal of Mathematics, 46:6 (2022), 2250–2263 | DOI
[22] Yong Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier, 2016, 294 pp.
[23] Wei, T., Zhang, Y. and Gao, D., “Identification of the Zeroth-Order Coefficient and Fractional Order in a Time-Fractional Reaction-Diffusion-Wave Equation”, Mathematical Methods in the Applied Sciences, 46:1 (2022), 142–166 | DOI
[24] Lorenzi, A. and Sinestrari, E., “An Inverse Problem in the Theory of Materials with Memory”, Nonlinear Analysis: Theory, Methods and Applications, 12:12 (1988), 411–423 | DOI
[25] Grasselli M., Kabanikhin S. I. and Lorenzi A., “An Inverse Hyperbolic Integro-Differential Problem Arising in Geophysics II”, Nonlinear Analysis: Theory, Methods and Applications, 15 (1990), 283–298
[26] Wang, H. and Wu, B., “On the Well-Posedness of Determination of Two Coefficients in a Fractional Integro-Differential Equation”, Chinese Annals of Mathematics, Series B, 35:3 (2014), 447–468 | DOI
[27] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006
[28] Adams, R. A, Sobolev Spaces, Academic Press, New York, 1975
[29] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer Science and Business Media, New York, 2012
[30] Brezis, H., Functional Analysis, Sobolev Spaces, and Partial Differential Equations, Springer, 2010, 614 pp.
[31] Djrbashian, M. M, Integral Transforms and Representations of Functions in the Complex Domain, Nauka, M., 1966, 672 pp. (in Russian)
[32] Sakamoto, K. and Yamamoto, M., “Initial Value/Boundary Value Problems for Fractional Diffusion-Wave Equations and Applications to Some Inverse Problems”, Journal of Mathematical Analysis and Applications, 382:1 (2011), 426–447 | DOI
[33] Wu, B. and Wu, S., “Existence and Uniqueness of an Inverse Source Problem for a Fractional Integro-Differential Equation”, Computers and Mathematics with Applications, 68:10 (2014), 1123–1136 | DOI