@article{VMJ_2024_26_3_a6,
author = {D. A. Polyakova},
title = {On kernels of convolution operators in the {Roumieu} spaces of ultradifferentiable functions},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {72--85},
year = {2024},
volume = {26},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a6/}
}
TY - JOUR AU - D. A. Polyakova TI - On kernels of convolution operators in the Roumieu spaces of ultradifferentiable functions JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 72 EP - 85 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a6/ LA - ru ID - VMJ_2024_26_3_a6 ER -
D. A. Polyakova. On kernels of convolution operators in the Roumieu spaces of ultradifferentiable functions. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 72-85. http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a6/
[1] Meise, R., “Sequence Space Representations For Zero-Solutions of Convolution Equations on Ultradifferentiable Functions of Roumieu Type”, Studia Mathematica, 92 (1989), 211–230 | DOI
[2] Braun, R. W., Meise, R. and Vogt, D., “Existence of Fundamental Solutions and Surjectivity of Convolution Operators on Classes of Ultradifferentiable Functions”, Proceedings of the London Mathematical Society, 61:2 (1990), 344–370 | DOI
[3] Meyer, T., “Surjectivity of Convolution Operators on Spaces of Ultradifferentialble Functions of Roumieu Type”, Studia Mathematica, 125:2 (1997), 101–129 | DOI
[4] Polyakova, D. A., “Solvability of the Inhomogeneous Cauchy–Riemann Equation in Projective Weighted Spaces”, Siberian Mathematical Journal, 58:1 (2017), 142–152 | DOI | DOI
[5] Polyakova, D. A., “On the Image of the Convolution Operator in Spaces of Ultradifferentiable Functions”, Algebra i Analiz, 36:2 (2024), 108–130 (in Russian)
[6] Polyakova, D. A., “General Solution of the Homogeneous Convolution Equation in Spaces of Ultradifferentiable Functions”, St. Petersburg Mathematical Journal, 31:1 (2020), 85–105 | DOI
[7] Napalkov, V. V., “A Basis in the Space of Solutions of a Convolution Equation”, Mathematical Notes, 43:1 (1988), 27–33 | DOI
[8] Krivosheev, A. S., “The Schauder Basis in the Solution Space of a Homogeneous Convolution Equation”, Mathematical Notes, 57:1 (1995), 41–50 | DOI
[9] Abanin, A. V., Ishimura, R. and Le Hai Khoi, “Exponential-Polynomial Bases for Null Spaces of Convolution Operators in $A^{-\infty}$”, Contemporary Mathematics, 547, 2011, 1–16
[10] Brawn, R. W., Meise, R. and Taylor, B. A., “Ultradifferentiable Functions and Fourier Analysis”, Results in Mathematics, 17 (1990), 206–237 | DOI
[11] Abanin, A. V. and Abanina, D. A., “Division Theorem in Some Weighted Spaces of Entire Functions”, Vladikavkaz Math. J., 12:3 (2010), 3–20 (in Russian)
[12] Abanina, D. A., “Solvability of Convolution Equations in the Beurling Spaces of Ultradifferentiable Functions of Mean Type on an Interval”, Siberian Mathematical Journal, 53:3 (2012), 377–392 | DOI
[13] Zharinov, V. V., “Compact Families of Locally Convex Topological Vector Spaces, Frechet–Schwartz and Dual Frechet–Schwartz Spaces”, Russian Mathematical Surveys, 34:4 (1979), 105–143 | DOI
[14] Edwards, R. D, Functional Analysis. Theory and Applications, Holt Rinehart and Winston, New York–Chicago–San Francisco–Toronto–London, 1965
[15] Robertson, A. P. and Robertson, W., Topological Vector Spaces, Cambridge Tracts in Mathematics, CUP Archive, 1980
[16] Grothendieck, A., “Sur les espaces $(F)$ et $(DF)$”, Summa Brasiliensis Mathematicae, 3 (1954), 57–123
[17] Meise R. and Vogt D, Introduction to Functional Analysis, Grand. Text. Math., 2, Oxford Univ. Press, New York, 1997