On kernels of convolution operators in the Roumieu spaces of ultradifferentiable functions
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 72-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider convolution operators in the Roumieu spaces of ultradiffereniable functions of mean type on the real axis. The famous Gevrey classes are also the Roumieu spaces. As particular cases, convolution operators include the differential equations of infinite order with constant coefficients, difference-differential and integro-differential equations. From recent results for convolution operators in the Beurling spaces of mean type and from the connection between the Roumieu and the Beurling spaces it follows that for the surjectivity of convolution operator it is necessary that the symbol of the operator is slowly decreasing with respect to the weight function. Under this assumption, we obtain the isomorphic description for the kernel of the convolution operator as a sequence space. We also construct an absolute basis in the space of all solutions of the homogeneous convolution equation. These results are of their own interest. On the other hand, they are the necessary step for investigation of the problem of surjectivity of the convolution operator in the Roumieu spaces of mean type.
@article{VMJ_2024_26_3_a6,
     author = {D. A. Polyakova},
     title = {On kernels of convolution operators in the {Roumieu} spaces of ultradifferentiable functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {72--85},
     year = {2024},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a6/}
}
TY  - JOUR
AU  - D. A. Polyakova
TI  - On kernels of convolution operators in the Roumieu spaces of ultradifferentiable functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 72
EP  - 85
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a6/
LA  - ru
ID  - VMJ_2024_26_3_a6
ER  - 
%0 Journal Article
%A D. A. Polyakova
%T On kernels of convolution operators in the Roumieu spaces of ultradifferentiable functions
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 72-85
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a6/
%G ru
%F VMJ_2024_26_3_a6
D. A. Polyakova. On kernels of convolution operators in the Roumieu spaces of ultradifferentiable functions. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 72-85. http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a6/

[1] Meise, R., “Sequence Space Representations For Zero-Solutions of Convolution Equations on Ultradifferentiable Functions of Roumieu Type”, Studia Mathematica, 92 (1989), 211–230 | DOI

[2] Braun, R. W., Meise, R. and Vogt, D., “Existence of Fundamental Solutions and Surjectivity of Convolution Operators on Classes of Ultradifferentiable Functions”, Proceedings of the London Mathematical Society, 61:2 (1990), 344–370 | DOI

[3] Meyer, T., “Surjectivity of Convolution Operators on Spaces of Ultradifferentialble Functions of Roumieu Type”, Studia Mathematica, 125:2 (1997), 101–129 | DOI

[4] Polyakova, D. A., “Solvability of the Inhomogeneous Cauchy–Riemann Equation in Projective Weighted Spaces”, Siberian Mathematical Journal, 58:1 (2017), 142–152 | DOI | DOI

[5] Polyakova, D. A., “On the Image of the Convolution Operator in Spaces of Ultradifferentiable Functions”, Algebra i Analiz, 36:2 (2024), 108–130 (in Russian)

[6] Polyakova, D. A., “General Solution of the Homogeneous Convolution Equation in Spaces of Ultradifferentiable Functions”, St. Petersburg Mathematical Journal, 31:1 (2020), 85–105 | DOI

[7] Napalkov, V. V., “A Basis in the Space of Solutions of a Convolution Equation”, Mathematical Notes, 43:1 (1988), 27–33 | DOI

[8] Krivosheev, A. S., “The Schauder Basis in the Solution Space of a Homogeneous Convolution Equation”, Mathematical Notes, 57:1 (1995), 41–50 | DOI

[9] Abanin, A. V., Ishimura, R. and Le Hai Khoi, “Exponential-Polynomial Bases for Null Spaces of Convolution Operators in $A^{-\infty}$”, Contemporary Mathematics, 547, 2011, 1–16

[10] Brawn, R. W., Meise, R. and Taylor, B. A., “Ultradifferentiable Functions and Fourier Analysis”, Results in Mathematics, 17 (1990), 206–237 | DOI

[11] Abanin, A. V. and Abanina, D. A., “Division Theorem in Some Weighted Spaces of Entire Functions”, Vladikavkaz Math. J., 12:3 (2010), 3–20 (in Russian)

[12] Abanina, D. A., “Solvability of Convolution Equations in the Beurling Spaces of Ultradifferentiable Functions of Mean Type on an Interval”, Siberian Mathematical Journal, 53:3 (2012), 377–392 | DOI

[13] Zharinov, V. V., “Compact Families of Locally Convex Topological Vector Spaces, Frechet–Schwartz and Dual Frechet–Schwartz Spaces”, Russian Mathematical Surveys, 34:4 (1979), 105–143 | DOI

[14] Edwards, R. D, Functional Analysis. Theory and Applications, Holt Rinehart and Winston, New York–Chicago–San Francisco–Toronto–London, 1965

[15] Robertson, A. P. and Robertson, W., Topological Vector Spaces, Cambridge Tracts in Mathematics, CUP Archive, 1980

[16] Grothendieck, A., “Sur les espaces $(F)$ et $(DF)$”, Summa Brasiliensis Mathematicae, 3 (1954), 57–123

[17] Meise R. and Vogt D, Introduction to Functional Analysis, Grand. Text. Math., 2, Oxford Univ. Press, New York, 1997