@article{VMJ_2024_26_3_a4,
author = {M. B. Karmanova},
title = {Metric characteristics of classes of compact sets on {Carnot} groups with {sub-Lorentzian} structure},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {56--64},
year = {2024},
volume = {26},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a4/}
}
TY - JOUR AU - M. B. Karmanova TI - Metric characteristics of classes of compact sets on Carnot groups with sub-Lorentzian structure JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 56 EP - 64 VL - 26 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a4/ LA - en ID - VMJ_2024_26_3_a4 ER -
M. B. Karmanova. Metric characteristics of classes of compact sets on Carnot groups with sub-Lorentzian structure. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 56-64. http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a4/
[1] Miklyukov, V. M., Klyachin, A. A. and Klyachin, V. A., Maximal Surfaces in Minkowski Space-Time, VolSU, Volgograd, 2011, 530 pp. (in Russian)
[2] Krym, V. R. and Petrov, N. N., “Equations of Motion of a Charged Particle in a Five-Dimensional Model of the General Theory of Relativity with a Nonholonomic Four-Dimensional Velocity Space”, Vestnik St. Petersburg University: Mathematics, 40:1 (2007), 52–60 | DOI
[3] Krym, V. R. and Petrov, N. N., “The Curvature Tensor and the Einstein Equations for a Four-Dimensional Nonholonomic Distribution”, Vestnik St. Petersburg University: Mathematics, 41:3 (2008), 256–265 | DOI
[4] Berestovskii, V. N. and Gichev, V. M., “Metrized Left-Invariant Orders on Topological Groups”, St. Petersburg Mathematical Journal, 11:4 (2000), 543–565
[5] Karmanova, M. B., “Lipschitz Images of Open Sets on Sub-Lorentzian Structures”, Siberian Advances in Mathematics, 34:1 (2024), 67–79 | DOI
[6] Folland, G. B. and Stein, E. M, Hardy Spaces on Homogeneous Group, Princeton University Press, Princeton, 1982, 286 pp.
[7] Vodopyanov, S. K. and Ukhlov, A. D., “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. I”, Siberian Advances in Mathematics, 14:4 (2004), 78–125
[8] Vodopyanov, S. K. and Ukhlov, A. D., “Set Functions and Their Applications in the Theory of Lebesgue and Sobolev Spaces. II”, Siberian Advances in Mathematics, 15:1 (2005), 91–125
[9] Pansu, P., “Metriques de Carnot–Caratheodory et Quasi-Isometries des Espaces Symetriques de Rang 1”, The Annals of Mathematics, 129:1 (1989), 1–60 | DOI
[10] Vodopyanov, S., “Geometry of Carnot–Carathéodory Spaces and Differentiability of Mappings”, The Interaction of Analysis and Geometry, Contemporary Mathematics, 424, AMS, Providence, RI, 2007, 247–301
[11] Vodop'yanov, S. K., “$\mathcal P$-Differentiability on Carnot Groups in Different Topologies and Related Topics”, Proceedings in Analysis and Geometry, Institute of Mathematics of SB RAS, Novosibirsk, 2000, 603–670
[12] Karmanova, M. B., “An Area Formula for Lipschitz Mappings of Carnot–Carathéodory Spaces”, Izvestiya: Mathematics, 78:3 (2014), 475–499 | DOI