On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 47-55
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the set $X$ automorphisms of the graph $\Gamma$ let ${\rm Fix}(X)$ be a set of all vertices of $\Gamma$ fixed by any automorphism from $X$. There are $7$ feasible intersection arrays of distance regular graphs with diameter $3$ and degree $44$. Early it was proved that for fifth of them graphs do not exist. In this paper it is founded possible automorphisms of distance regular graph with intersection array $\{44,30,9;1,5,36\}$. The proof of the theorem is based on Higman’s method of working with automorphisms of a distance regular graph. The consequence of the main result is is the following: Let $\Gamma$ be a distance regular graph with intersection array $\{44,30,9;1,5,36\}$ and the group $G={\rm Aut}(\Gamma)$ acts vertex-transitively; then $G$ acts intransitively on the set arcs of $\Gamma$.
@article{VMJ_2024_26_3_a3,
     author = {M. M. Isakova and A. A. Makhnev and Mingzhu Chen},
     title = {On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {47--55},
     year = {2024},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a3/}
}
TY  - JOUR
AU  - M. M. Isakova
AU  - A. A. Makhnev
AU  - Mingzhu Chen
TI  - On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 47
EP  - 55
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a3/
LA  - ru
ID  - VMJ_2024_26_3_a3
ER  - 
%0 Journal Article
%A M. M. Isakova
%A A. A. Makhnev
%A Mingzhu Chen
%T On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 47-55
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a3/
%G ru
%F VMJ_2024_26_3_a3
M. M. Isakova; A. A. Makhnev; Mingzhu Chen. On automorphisms of a graph with an intersection array $\{44,30,9;1,5,36\}$. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 47-55. http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a3/

[1] Brouwer A. E., Cohen A. M., Neumaier A., Distance-Regular Graphs, Springer-Verlag, Berlin–Heidelberg–New York, 1989

[2] Chen Mingzhu, Makhnev, A. A. and Klimov, V. S., “On Distance Regular Graphs of Diameter $3$ and Degrees $44$”, Youth Conference of the Institute of Mechanics and Mathematics. Ural Branch of the Russian Academy of Sciences, Abstracts of Reports (Ekaterinburg, 2024), 1132–1134 (in Russian)

[3] Gavrilyuk, A. L. and Makhnev, A. A., “On Automorphisms of a Distance-Regular Graph with Intersection Array $\{56,45,1;1,9,56\}$”, Reports of the Russian Academy of Sciences, 432:5 (2010), 512–515 (in Russian)

[4] Cameron P. J., Permutation Groups, Math. Soc. Student Texts, 45, Cambridge Univ. Press, London, 1999 | DOI

[5] Cameron P. J., van Lint J., Graphs, Codes, Designs and Their Links, London Math. Soc. Student Texts, 22, Cambridge Univ. Press, 1991