Some analytical solutions in problems of optimization of variable thermal conductivity coefficient
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 33-46

Voir la notice de l'article provenant de la source Math-Net.Ru

New formulations and solutions to problems of optimization of a variable thermal conductivity coefficient for an inhomogeneous pipe and a flat wall with mixed boundary conditions are presented. The quality functionals are either the average temperature or the maximum temperature, and as a limitation – either the condition of constancy of the integral thermal conductivity coefficient, or a priori information about the change in the thermal conductivity coefficient in a known range. To solve problems for a pipe, two optimization methods are used: 1) a variational approach based on the introduction of conjugate functions and the construction of an extended Lagrange functional; 2) Pontryagin’s maximum principle. To solve the optimization problem for a flat wall under the assumption of weak material inhomogeneity, the expansion method in terms of a small physical parameter is used. As the fourth problem, optimization of the variable thermal conductivity coefficient of a non-uniform flat wall with boundary conditions of the first kind is considered. The solution to a singular optimization problem is found among broken extremals. Using specific examples, a comparison was made of the values of minimized functionals for bodies with a constant thermal conductivity coefficient and an optimal variable coefficient. The gain from optimization is estimated.
@article{VMJ_2024_26_3_a2,
     author = {A. O. Vatulyan and S. A. Nesterov},
     title = {Some analytical solutions in problems of optimization of variable thermal conductivity coefficient},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/}
}
TY  - JOUR
AU  - A. O. Vatulyan
AU  - S. A. Nesterov
TI  - Some analytical solutions in problems of optimization of variable thermal conductivity coefficient
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 33
EP  - 46
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/
LA  - ru
ID  - VMJ_2024_26_3_a2
ER  - 
%0 Journal Article
%A A. O. Vatulyan
%A S. A. Nesterov
%T Some analytical solutions in problems of optimization of variable thermal conductivity coefficient
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 33-46
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/
%G ru
%F VMJ_2024_26_3_a2
A. O. Vatulyan; S. A. Nesterov. Some analytical solutions in problems of optimization of variable thermal conductivity coefficient. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 33-46. http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/