Some analytical solutions in problems of optimization of variable thermal conductivity coefficient
    
    
  
  
  
      
      
      
        
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 33-46
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			New formulations and solutions to problems of optimization of a variable thermal conductivity coefficient for an inhomogeneous pipe and a flat wall with mixed boundary conditions are presented. The quality functionals are either the average temperature or the maximum temperature, and as a limitation – either the condition of constancy of the integral thermal conductivity coefficient, or a priori information about the change in the thermal conductivity coefficient in a known range. To solve problems for a pipe, two optimization methods are used: 1) a variational approach based on the introduction of conjugate functions and the construction of an extended Lagrange functional; 2) Pontryagin’s maximum principle. To solve the optimization problem for a flat wall under the assumption of weak material inhomogeneity, the expansion method in terms of a small physical parameter is used. As the fourth problem, optimization of the variable thermal conductivity coefficient of a non-uniform flat wall with boundary conditions of the first kind is considered. The solution to a singular optimization problem is found among broken extremals. Using specific examples, a comparison was made of the values of minimized functionals for bodies with a constant thermal conductivity coefficient and an optimal variable coefficient. The gain from optimization is estimated.
			
            
            
            
          
        
      @article{VMJ_2024_26_3_a2,
     author = {A. O. Vatulyan and S. A. Nesterov},
     title = {Some analytical solutions in problems of optimization of variable thermal conductivity coefficient},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/}
}
                      
                      
                    TY - JOUR AU - A. O. Vatulyan AU - S. A. Nesterov TI - Some analytical solutions in problems of optimization of variable thermal conductivity coefficient JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 33 EP - 46 VL - 26 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/ LA - ru ID - VMJ_2024_26_3_a2 ER -
%0 Journal Article %A A. O. Vatulyan %A S. A. Nesterov %T Some analytical solutions in problems of optimization of variable thermal conductivity coefficient %J Vladikavkazskij matematičeskij žurnal %D 2024 %P 33-46 %V 26 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/ %G ru %F VMJ_2024_26_3_a2
A. O. Vatulyan; S. A. Nesterov. Some analytical solutions in problems of optimization of variable thermal conductivity coefficient. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 33-46. http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/
