Some analytical solutions in problems of optimization of variable thermal conductivity coefficient
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 33-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New formulations and solutions to problems of optimization of a variable thermal conductivity coefficient for an inhomogeneous pipe and a flat wall with mixed boundary conditions are presented. The quality functionals are either the average temperature or the maximum temperature, and as a limitation – either the condition of constancy of the integral thermal conductivity coefficient, or a priori information about the change in the thermal conductivity coefficient in a known range. To solve problems for a pipe, two optimization methods are used: 1) a variational approach based on the introduction of conjugate functions and the construction of an extended Lagrange functional; 2) Pontryagin’s maximum principle. To solve the optimization problem for a flat wall under the assumption of weak material inhomogeneity, the expansion method in terms of a small physical parameter is used. As the fourth problem, optimization of the variable thermal conductivity coefficient of a non-uniform flat wall with boundary conditions of the first kind is considered. The solution to a singular optimization problem is found among broken extremals. Using specific examples, a comparison was made of the values of minimized functionals for bodies with a constant thermal conductivity coefficient and an optimal variable coefficient. The gain from optimization is estimated.
@article{VMJ_2024_26_3_a2,
     author = {A. O. Vatulyan and S. A. Nesterov},
     title = {Some analytical solutions in problems of optimization of variable thermal conductivity coefficient},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {33--46},
     year = {2024},
     volume = {26},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/}
}
TY  - JOUR
AU  - A. O. Vatulyan
AU  - S. A. Nesterov
TI  - Some analytical solutions in problems of optimization of variable thermal conductivity coefficient
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 33
EP  - 46
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/
LA  - ru
ID  - VMJ_2024_26_3_a2
ER  - 
%0 Journal Article
%A A. O. Vatulyan
%A S. A. Nesterov
%T Some analytical solutions in problems of optimization of variable thermal conductivity coefficient
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 33-46
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/
%G ru
%F VMJ_2024_26_3_a2
A. O. Vatulyan; S. A. Nesterov. Some analytical solutions in problems of optimization of variable thermal conductivity coefficient. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 3, pp. 33-46. http://geodesic.mathdoc.fr/item/VMJ_2024_26_3_a2/

[1] Lee W. Y., Stinton D. P., Bernardt C. C., Erdogan F, Lee Y. D., Mutasin Z., “Concept of functionally graded materials for advanced thermal barrier coatings applications”, Journal of American Ceramic Society, 19 (1996), 3003–3012 | DOI

[2] Wetherhold R. C., Seelman S., Wang J., “The use of functionally graded materials to eliminated or control thermal deformation”, Composites Science and Technology, 1996, no. 56, 1099–1104 | DOI

[3] Mathew J., Krishnan S., “A review on transient thermal management of electronic devices”, J. Electron. Packag., 144:1 (2022), 3003–3012 | DOI

[4] Bejan A., “Constructal-theory network of conducting paths for cooling a heat generating volume”, Int. J. Heat Mass Transf., 40:4 (1997), 799–816 | DOI

[5] Hua Y.-C., Zhao T., Guo Z.-Y., “Transient thermal conduction optimization for solid sensible heat thermal energy storage modules by the Monte Carlo method”, Energy, 133 (2017), 338–347 | DOI

[6] Chen K., Wang S., Song M., “Optimization of heat source distribution for two-dimensional heat conduction using bionic method”, Int. J. Heat Mass Transfer, 93 (2016), 108–117

[7] Birman V., Byrd L. W., “Modeling and analysis of functionally graded materials and structures”, Applied Mechanics Reviews, 60:5 (2007), 195–216 | DOI

[8] Suresh S., Mortensen A., Fundamentals of Functionally Graded Materials, Cambridge Publication, London, 1998, 165 pp. | DOI

[9] Bykov Yu. V., Egorov S. V., Eremeev A. G. and at all., “Fabrication of Metal-Ceramic Functionally Graded Materials by Microwave Sintering”, Physics and Chemistry of Materials Treatment, 2011, no. 4, 52–61 (in Russian)

[10] Gururaja U., Shrikantha R. S., Gangadharan K. V., “Functionally graded composite materials: An overview”, Procedia Matherials Science, 5 (2014), 1291–1299 | DOI

[11] Dirker J., Meyer J. P., “Topology optimization for an internal heat-conduction cooling scheme in a square domain for high heat flux applications”, J. Heat Transfer, 135:11 (2013) | DOI

[12] Cheng C. H., Chen Y. F., “Topology optimization of heat conduction paths by a non-constrained volume-of-solid function method”, Int. J. Therm. Sci., 78 (2014), 16–25 | DOI

[13] Dede E. M., Joshi S. N., Zhou F., “Topology optimization, additive layer manufacturing, and experimental testing of an air-cooled heat sink”, J. Mech. Des., 137:11 (2015) | DOI

[14] Gersborg-Hansen A., Bendsoe M. P., Sigmund O., “Topology optimization of heat conduction problems using the finite volume method”, Struct. Multid. Optim., 31:4 (2006), 251–259 | DOI

[15] Dbouk T., “A review about the engineering design of optimal heat transfer systems using topology optimization”, Appl. Therm. Eng., 112 (2017), 841–854 | DOI

[16] Yongcun Z., Shutian L., Heting Q., “Design of the heat conduction structure based on the topology optimization”, Developments in Heat Transfer, ed. Dr. Marco Aurelio Dos Santos Bernardes, 2011, 523–536 | DOI

[17] Banichuk, N. V., Introduction to Optimization of Structures, Nauka, M., 1986, 304 pp. (in Russian)

[18] Tong Z.-X., Li M.-J., Yan J.-J., Tao W.-Q., “Optimizing thermal conductivity distribution for heat conduction problems with different optimization objectives”, Int. J. Heat Mass Transfer, 119 (2018), 343–354 | DOI

[19] Bratus, A. S. and Kartvelishvili, V. M., “Approximate Analitycal Solutions in Problems of Optimizing Stability and Vibration Frequencies of Elastic Thin-Walled Structure”, Izvestiya AN SSSR. Mekhanika tverdogo tela, 1981, no. 6, 119–139 (in Russian)

[20] Sarkisyan V. S., Gukasyan G. M., Grigoryan A. A., “Optimal design of a circular plate with rectilinear anisotropy”, J. Math. Sci., 104:5 (2001), 1569–1574 | DOI

[21] Sarkisyan, V. S., Some Problems of the Mathematical Theory of Elasticity of an Anisotropic Body, YerSU Publishing House, Yerevan, 1976, 536 pp. (in Russian)

[22] Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V. and Mishchenko E. F., The Mathematical Theory of Optimal Processes, Interscience Publishers, New York, 1962, 376 pp.

[23] Warner W. H., “Optimal design problems for elastic bodies by use of the maximum principle”, Journal of Elasticity, 59 (2000), 357–367 | DOI

[24] Alekhin, V. V., “Design of a Cross-Laminated Cantilever of Minimum Mass with a Limitation on Maximum Deflection”, Applied Mechanics and Technical Physics, 48:4 (2007), 104–110 (in Russian)

[25] Vatulyan, A. O. and Nesterov, S. A., Coefficient Inverse Problems of Thermomechanics, 2nd ed., Southern Federal University Press, Rostov-on-Don–Taganrog, 2022, 178 pp. (in Russian)

[26] Meric, R. A., “Optimization of thermal Conductivity Coefficients of Isotropic and Orthotropic Bodies”, Heat Transfer, 1985, no. 3, 1–6 (in Russian)

[27] Meric R. A., “Material and load optimization by the adjoint variable method”, Trans. ASME. J. Heat Transfer, 109:3 (1987), 782–784

[28] Tian Z., Xuan W., Zeng-Yuan G., “Optimal thermal conductivity design for the volume-to-point heat conduction problem based on adjoint analysis”, Case Studies in Thermal Engineering, 40 (2022), 1–16 | DOI

[29] Ito K., Kunisch K., Lagrange Multiplier Approach To Variational Problems and Applications, SIAM, 2008, 341 pp. | DOI

[30] Nedin R., Nesterov S., Vatulyan A., “On reconstruction of thermalphysic characteristics of functionally graded hollow cylinder”, Applied Mathematical Modelling, 40:4 (2016), 2711–2719 | DOI