Hardy type inequalities in classical and grand Lebesgue spaces $L_{p)}$, $0$, for quasi-monotone functions
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 70-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 2020 Rovshan A. Bandaliyev et al. proved the boundedness of Hardy operator for monotone functions in grand Lebesgue spaces $L_{p)} (0,1)$, $0. In particular,they established similar results for the Hardy operator in weighted classical Lebesgue spaces. Moreover, it is proved that the grand Lebesgue space $L_{p) } (0,1)$ is a quasi-Banach function space. In this work, we are interested in Hardy inequalities applied to quasi-monotonic functions in classical Lebesgue spaces and grand Lebesgue spaces. we establish the boundedness of Hardy operator for quasi-monotone functions in grand Lebesgue spaces $L_{p)}$, $w(0,1)$ $0. In addition some integral inequalities for the Hardy operator are proved in classical weighted Lebesgue spaces $L_{p,w} (0,1)$, $0 for quasi-monotone functions. All inequalities are proved with sharp constants. Some results of Rovshan A. Bandaliyev et al. are deduced as particular cases. Also other estimates are obtained in classical Lebesgue spaces for Hardy's operator and its dual.
@article{VMJ_2024_26_2_a5,
     author = {A. Ouardani and A. Senouci},
     title = {Hardy type inequalities in classical and grand {Lebesgue} spaces $L_{p)}$, $0<p\leqslant 1$, for quasi-monotone functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {70--81},
     year = {2024},
     volume = {26},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a5/}
}
TY  - JOUR
AU  - A. Ouardani
AU  - A. Senouci
TI  - Hardy type inequalities in classical and grand Lebesgue spaces $L_{p)}$, $0
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 70
EP  - 81
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a5/
LA  - en
ID  - VMJ_2024_26_2_a5
ER  - 
%0 Journal Article
%A A. Ouardani
%A A. Senouci
%T Hardy type inequalities in classical and grand Lebesgue spaces $L_{p)}$, $0
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 70-81
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a5/
%G en
%F VMJ_2024_26_2_a5
A. Ouardani; A. Senouci. Hardy type inequalities in classical and grand Lebesgue spaces $L_{p)}$, $0
                      
                    

[1] Iwaniec, T., Sbordone, C., “On the Integrability of the Jacobian Under Minimal Hypotheses”, Archive for Rational Mechanics and Analysis, 119:2 (1992), 129–143 | DOI | MR | Zbl

[2] Capone, C., Fiorenza, A., “On small Lebesgue spaces”, Journal of Function Spaces, 3:1 (2005), 73–89 | DOI | MR | Zbl

[3] Fiorenza, A., Karadzhov, G. E., “Grand and Small Lebesgue Spaces and Their Analogs”, Zeitschrift für Analysis und ihre Anwendungen, 23:4 (2004), 657–681 | DOI | MR | Zbl

[4] Samko, S. G., Umarkhadzhiev, S. M., “Local Grand Lebesgue Spaces”, Math. J. Vladikavkaz, 23:4 (2021), 96–108 | DOI | MR | Zbl

[5] Umarkhadzhiev, S. M., “Generalization of the Notion of Grand Lebesgue Space”, Russian Mathematics, 58:4 (2014), 35–43 | DOI | MR | Zbl

[6] Umarkhadzhiev, S. M., “One-Dimensional and Multidimensional Hardy Operators in Grand Lebesgue Spaces”, Azerbaijan Journal of Mathematics, 7:2 (2017), 132–152 | MR | Zbl

[7] Bandaliev, A. R., Safarova, K. H., “On Hardy Type Inequalities in Grand Lebesgue Spaces $L_{p)}$ for $0 p \leqslant 1$”, Linear and Multilinear Algebra, 70:21 (2022), 1–14 | DOI | MR

[8] Bergh, J., Burenkov, V., Persson, L. E., “Best Constants in Reversed Hardy's Inequalities for Quasimonotone Functions”, Acta Scientiarum Mathematicarum, Szeged, 59:1-2 (1994), 221–239 | MR | Zbl