On the local extension of the group of parallel translations in three-dimensional space. II
Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 54-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article solves the problem of local extension of the group of parallel translations of a three-dimensional space to a locally bounded exactly doubly transitive group of Lie transformations of the same space. Locally bounded exactly twice transitivity means the existence of a unique transformation that takes an arbitrary pair of non-coinciding points from some open neighborhood to almost any pair of points from the same neighborhood. The problem posed is solved for four cases related to Jordan forms of third-order matrices. Using these Jordan matrices, systems of linear differential equations are written, the solutions of which lead to the basis operators of a six-dimensional linear space. Requiring that the commutators of the basis operators be closed, we find Lie algebras. By checking the condition of bounded exactly twice transitivity, we obtain the Lie algebras of the required Lie transformation groups. At the end of the paper it is proved that these Lie algebras are either solvable or representable as a direct sum of a solvable ideal and a subalgebra isomorphic to $sl(2,R)$. In this case, solvable Lie algebras are decomposed into the direct sum of a nilpotent ideal and a solvable subalgebra. Finally, the isomorphism of some above found Lie algebras is established.
@article{VMJ_2024_26_2_a4,
     author = {V. A. Kyrov},
     title = {On the local extension of the group of parallel translations in three-dimensional {space.~II}},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {54--69},
     year = {2024},
     volume = {26},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a4/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - On the local extension of the group of parallel translations in three-dimensional space. II
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2024
SP  - 54
EP  - 69
VL  - 26
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a4/
LA  - ru
ID  - VMJ_2024_26_2_a4
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T On the local extension of the group of parallel translations in three-dimensional space. II
%J Vladikavkazskij matematičeskij žurnal
%D 2024
%P 54-69
%V 26
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a4/
%G ru
%F VMJ_2024_26_2_a4
V. A. Kyrov. On the local extension of the group of parallel translations in three-dimensional space. II. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 54-69. http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a4/

[1] Kyrov, V. A., “On the Local Extension of the Group of Parallel Translations in Three-Dimensional Space”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Kompyuternye Nauki, 32:1 (2022), 62–80 (in Russian) | DOI | MR | Zbl

[2] Kyrov, V. A., “On the Question of Local Extension of the Group of Parallel Translations of Three-Dimensional Space”, Vladikavkaz Mathematical Journal, 23:1 (2021), 32–42 (in Russian) | DOI | MR | Zbl

[3] Gorbatsevich V. V., “Extension of transitive actions of Lie groups”, Izv. Math, 81:6 (2017), 1143–1154 | DOI | DOI | MR | MR | Zbl

[4] Mikhailichenko, G. G., Group Symmetry of Physical Structures, BGPU, Barnaul, 2003, 203 pp. (in Russian)

[5] Kyrov, V. A. and Mikhailichenko, G. G., “Embedding of the Additive Two-Metric Phenomenologically Symmetric Geometry of Two Sets of Rank (2,2) into the Two-Metric Phenomenologically Symmetric Geometries of Two Sets of Rank $(3,2)$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Kompyuternye Nauki, 28:1 (2018), 305–327 (in Russian) | DOI | MR | Zbl

[6] Ovsyannikov, L. V., Group Analysis of Differential Equation, Nauka, M., 1978, 400 pp. (in Russian) | MR

[7] Morozov, V. V., “Classification of Nilpotent Lie Algebras of the Sixth Order”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1958, no. 4, 161–171 (in Russian) | Zbl

[8] Mubarakzyanov, G. M., “On Solvable Lie Algebras”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1963, no. 1, 114–123 (in Russian) | MR | Zbl

[9] Mubarakzyanov, G. M., “Classification of Sixth-Order Solvable Lie Algebras with one Non-Nilpotent Basis Element”, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1963, no. 4, 104–116 (in Russian) | Zbl

[10] Turkowski, P., “Solvable Lie Algebras of Dimension Six”, Journal of Mathematical Physics, 31:6 (1990), 1344–1350 | DOI | MR | Zbl

[11] Turkowski P., “Lowdimensional Real Lie Algebras”, Journal of Mathematical Physics, 29:10 (1988), 2139–2144 | DOI | MR | Zbl