@article{VMJ_2024_26_2_a2,
author = {S. O. Gladkov},
title = {On a class of solutions of {Laplace's} two-dimensional equation on a three-dimensional manifold},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {39--46},
year = {2024},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a2/}
}
TY - JOUR AU - S. O. Gladkov TI - On a class of solutions of Laplace's two-dimensional equation on a three-dimensional manifold JO - Vladikavkazskij matematičeskij žurnal PY - 2024 SP - 39 EP - 46 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a2/ LA - ru ID - VMJ_2024_26_2_a2 ER -
S. O. Gladkov. On a class of solutions of Laplace's two-dimensional equation on a three-dimensional manifold. Vladikavkazskij matematičeskij žurnal, Tome 26 (2024) no. 2, pp. 39-46. http://geodesic.mathdoc.fr/item/VMJ_2024_26_2_a2/
[1] Koshlyakov, N. S., Gliner, E. B. and Smirnov, M. M., Partial Differential Equation in Mathematical Physics, Vysshaya Shkola, M., 1970, 710 pp. (in Russian)
[2] Vladimirov, V. S., Equations of Mathematical Physics, Nauka, M., 1981, 512 pp. (in Russian) | MR
[3] Tikhonov, A. N. and Samarskiy, A. A., Equations of Mathematical Physics, Nauka, M., 2004, 800 pp. (in Russian) | MR
[4] Mikhaylov, V. P., Lectures on Equations of Mathematical Physics, Fizmatlit, M., 2001, 208 pp. (in Russian)
[5] Bogovskiy, M. E., Equations of Mathematical Physics, MFTI, M., 2019, 105 pp. (in Russian)
[6] Landau, L. D. and Lifshic, E. M., Hydrodynamics, v. 6, Nauka, M., 1988, 733 pp. (in Russian)
[7] Landau, L. D. and Lifshic, E. M., Theory of Elasticity, v. 7, Nauka, M., 2002, 286 pp. (in Russian)
[8] Gladkov S. O., “About one method of calculation in the arbitrary curvilinear basis of the Laplace operator and curl from the vector function”, Appl. Math. Nonlin. Sci, 7:2 (2021), 1–9 | DOI | MR
[9] Gladkov S. O., “To the question of Gauss's curvature in $n$-dimensional Eeuclidian space”, J. Math. Research, 12:6 (2020), 93–99 | DOI
[10] Gladkov S. O., “On a transversality condition for one variation problem with moving boundary”, J. Sib. Fed. Univ. Math. Phys, 12:1 (2019), 125–129 | DOI | MR | Zbl